Skip to main content

Off-Line Roman Cursive Handwriting Recognition

  • Chapter
Digital Document Processing

Part of the book series: Advances in Pattern Recognition ((ACVPR))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayat, N.E., Cheriet, M., Remaki, L., and Suen, C.Y. (2001). KMOD - a new support vector machine kernel with moderate decreasing for pattern recognition. Sixth International Conference on Document Analysis and Recognition, Seattle WA, USA, pp. 434-438.

    Google Scholar 

  2. Baird, H.S. (1992). Document image defect models. In: H.S Baird, H. Bunke, and K. Yamamoto (Eds.). Structured Document Image Analysis. New York: Springer, pp. 546-556.

    Google Scholar 

  3. Baird, H.S.(2000). The state of the art in document image degradation modeling. Fourth IAPR Workshop on Document Analysis Systems, pp. 1-13.

    Google Scholar 

  4. Baird, H.S., Govindaraju, V., and Lopresti, D.P. (2004). Document analysis systems for digital libraries: challenges and opportunities. In: S. Marinai and A. Dengel (Eds.). Lecture Notes in Computer Science. New York: Springer, Volume 3163, pp. 1-16.

    Google Scholar 

  5. Bozinovic, R. and Srihari, S.N. (1989). Off-line cursive script word recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1), pp. 68-83.

    Article  Google Scholar 

  6. Brakensiek, A., Rottland, J., Kosmala, A., and Rigoll, G. (2000). Off-line handwriting recognition using various hybrid modeling techniques and char-acter n-grams. Seventh International Workshop on Frontiers in Handwriting Recognition, Amsterdam, The Netherlands, pp. 343-352.

    Google Scholar 

  7. Breiman, L. (1996). Bagging predictors. Machine Learning, 2, pp. 123-140.

    Google Scholar 

  8. Bunke, H. (2003). Recognition of cursive Roman handwriting - past, present and future. Seventh International Conference on Document Analysis and Recognition, Edinburgh, Scotland, Volume 1, pp. 448-459.

    Google Scholar 

  9. Bunke, H., Roth, M., and Schukat-Talamazzini, E.G. (1995). Off-line hand-writing recognition using hidden Markov models. Pattern Recognition, 55 (1), pp. 75-89.

    MATH  Google Scholar 

  10. Caesar, T., Gloger, J.M., and Mandler, E. (1993). Preprocessing and feature extraction for a handwriting recognition system. Second International Conference on Document Analysis and Recognition, Tsukuba Science City, Japan, pp. 408-411.

    Google Scholar 

  11. Cano, J., Perez-Cortes, J.-C., Arlandis, J., and Llobet, R. (2002). Train-ing set expansion in handwritten character recognition. In: T. Caelli, A. Amin, R. Duin, M. Kamel, and D. de Ridder (Eds.). Structural, Syntactic and Statistical Pattern Recognition. LNCS 2396. New York: Springer, pp. 548-556.

    Chapter  Google Scholar 

  12. Casey, R.G. and Lecolinet, E. (1996). A survey of methods and strategies in character segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, pp. 690-706.

    Article  Google Scholar 

  13. Choi, H., Cho, S.J., and Kim, J.H. (2004). Writer-dependent online hand-writing generation with Bayesian networks. Ninth International Workshop on Frontiers in Handwriting Recognition, Tokyo, Japan, pp. 130-135.

    Google Scholar 

  14. Choisy, A. and Belaid, A. (2002). Cross-learning in analytic word recognition without segmentation. International Journal on Document Analysis and Recognition, 4, pp. 281-289.

    Article  Google Scholar 

  15. Cordella, L.P., Foggia, P., Sansone, C., and Vento, M. (1997). Subgraph transformation for inexact matching of attributed relational graphs. Com-puting, Supplement 12, pp. 43-52.

    MathSciNet  Google Scholar 

  16. Dietterich, T.G. (2000). Ensemble methods in machine learning. J. Kittler and F. Roli (Eds.). First International Workshop on Multiple Classifier Systems, pp. 1-15.

    Google Scholar 

  17. Dimauro, G., Impedovo, S., Modugno, R., and Pirlo, G. (2002). A new database for research on bank-check processing. Eighth International Work-shop on Frontiers in Handwriting Recognition, Niagra-on-the-Lake, Canada, pp. 524-528.

    Google Scholar 

  18. Elliman, D. and Sherkat, N. (2001). A truthing tool for generating a data-base of cursive words. Sixth International Conference on Document Analysis and Recognition, Seattle WA, USA, pp. 1255-1262.

    Google Scholar 

  19. Farouz, C., Gilloux, M., and Bertille, J.-M. (1999). Handwritten word recog-nition with contextual hidden Markov models. In: S.-W. Lee (Ed.). Advances in Handwriting Recognition. Singapore: World Scientific, pp. 183-192.

    Google Scholar 

  20. Fossey, R. and Baird, H.S. (1991). A 100 font classifier. First International Conference on Document Analysis and Recognition, St. Malo, France.

    Google Scholar 

  21. Franke, J. (1997). Isolated handprinted digit recognition. In: H. Bunke and P.S.P. Wang (Eds.). Handbook of Character Recognition and Document Image Analysis. Singapore: World Scientific, pp. 103-121.

    Google Scholar 

  22. Franke, J., Lam, L., Legault, R., Nadal, C., and Suen, C.Y. (1993). Ex-periments with the CENPARMI database combining different classification approaches. Third International Workshop on Frontiers in Handwriting Recognition, pp. 305-311.

    Google Scholar 

  23. Freud, Y. and Shapire, R.E. (1997). A decision theoretic generalization of online learning and application to boosting. Journal on Computer and Sys-tems Sciences, 55, pp. 119-139.

    Article  Google Scholar 

  24. Gader, P.D., Mohamed, M.A., and Keller, J.M. (1996). Fusion of handwritten word classifiers. Pattern Recognition Letters, 17, pp. 577-584.

    Article  Google Scholar 

  25. Gopisetty, S., Lorie, R., Mao, J., Mohiuddin, M., Sorin, A., and Yair, E. (1996). Automated forms-processing software and services. IBM Journal of Research and Development, 40(2), pp. 211-230.

    Article  Google Scholar 

  26. Gorski, N., Anisimov, V., Augustin, E., Baret, O., and Maximor, S. (2001). Industrial bank check processing: the A2iA check reader. International Jour-nal on Document Analysis and Recognition, 3, pp. 196-206.

    Article  Google Scholar 

  27. Günter, S. and Bunke, H. (2003). Ensembles of classifiers for handwritten word recognition. International Journal on Document Analysis and Recog-nition, 5(4), pp. 224-232.

    Article  Google Scholar 

  28. Günter, S. and Bunke, H. (2004). Handwritten word recognition using clas-sifier ensembles generated from multiple prototypes. International Journal of Pattern Recognition and Artificial Intelligence, 18(5), pp. 957-974.

    Article  Google Scholar 

  29. Günter, S. and Bunke, H. (2004). HMM-based handwritten word recogni-tion: on the optimization of the number of states, training iterations and Gaussian components. Pattern Recognition, 37(10), pp. 2069-2079.

    Article  Google Scholar 

  30. Günter, S. and Bunke, H. (2004). Multiple classifier systems in off-line handwritten word recognition - on the influence of training set and vocabulary size. International Journal of Pattern Recognition and Artificial Intelligence, 18 (7), pp. 1303-1320.

    Article  Google Scholar 

  31. Guyon, I. (1996). Handwriting synthesis from handwritten glyphs. Fifth International Workshop on Frontiers in Handwriting Recognition, Essex, England, pp. 309-312.

    Google Scholar 

  32. Guyon, I., Haralick, R.M., Hull, J.J., and Phillips, I.T. (1997). Data sets for OCR and document image understanding research. In: H. Bunke and P.S.P. Wang (Eds.). Handbook of Character Recognition and Document Image Analysis. Singapore: World Scientific, pp. 780-799.

    Google Scholar 

  33. Guyon, I., Schomaker, L., Plamondon, R., Liberman, M., and Janet, S.(1994). Unipen project of on-line data exchange and benchmarks. Twelfth International Conference on Pattern Recognition, Jerusalem, Israel, pp. 29-33.

    Google Scholar 

  34. Ha, T.M. and Bunke, H. (1997). Image processing methods for document image analysis. In: H. Bunke and P.S.P. Wang (Eds.). Handbook of Charac-ter Recognition and Document Image Analysis. Singapore: World Scientific, Chapter 1, pp. 1-47.

    Google Scholar 

  35. Ha, T.M. and Bunke, H. (1997). Off-line handwritten numeral recognition by perturbation method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5), pp. 535-539.

    Article  Google Scholar 

  36. Helmers, M. and Bunke, H. (2003). Generation and use of synthetic training data in cursive handwriting recognition. Proceedings of the First Iberian Conference on Pattern Recognition and Image Analysis.

    Google Scholar 

  37. Ho, T.K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, pp. 832-844.

    Article  Google Scholar 

  38. Ho, T.K., Hull, J.J., and Srihari, S.N. (1994). Decision combination in multi-ple classifier systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16, pp. 66-75.

    Article  Google Scholar 

  39. Hong, T. and Hull, J.J. (1993). Text recognition enhancement with a proba-bilistic lattice chart parser. International Conference on Document Analysis and Recognition, Tsukuba, Japan, pp. 222-225.

    Google Scholar 

  40. Huang, T. and Suen, C. (1995). Combination of multiple experts for the recognition of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, pp. 90-94.

    Article  Google Scholar 

  41. Hull, J.J. (1992). A hidden Markov model for language syntax in text recog-nition. Eleventh Proceedings on International Conference on Pattern Recog-nition, Volume B, pp. 124-127.

    Google Scholar 

  42. Hull, J.J. (1994). A database for handwritten text recognition research. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(5), pp. 550-554.

    Article  Google Scholar 

  43. Impedovo, S., Wang, P.S.P., and Bunke, H. (Eds.) (1997). Automatic Bankcheck Processing. Singapore: World Scientific.

    MATH  Google Scholar 

  44. Jelinek, F. (1998). Statistical Aspects of Speech Recognition. Cambridge, MA: MIT Press.

    Google Scholar 

  45. Johansson, S., Leech, G.N., and Goodluck, H. (1978). Manual of Informa-tion to Accompany the Lancaster-Oslo/Bergen Corpus of British English, for Use with Digital Computers. Oslo: Department of English, University of Oslo.

    Google Scholar 

  46. Kaltenmeier, A., Caesar, T., Gloger, J.M., and Mandler, E. (1993). Sophis-ticated topology of hidden Markov models for cursive script recognition. Second International Conference on Document Analysis and Recognition, Tsukuba Science City, Japan, pp. 139-142.

    Google Scholar 

  47. Kaufmann, G. and Bunke, H. (2000). Automated reading of check amounts. Pattern Analysis and Applications, 3, pp. 132-141.

    Article  Google Scholar 

  48. Kavallieratou, E., Fakotakis, N., and Kokkinakis, G. (2002). An uncon-strained handwriting recognition system. International Journal on Docu-ment Analysis and Recognition, 4, pp. 226-242.

    Article  Google Scholar 

  49. Kim, G., Govindaraju, V., and Srihari, S.N. (1999). An architecture for handwritten text recognition systems. International Journal on Document Analysis and Recognition, 2(1), pp. 37-44.

    Article  Google Scholar 

  50. Roli, F., Kittler, J., and Windeatt, T. (2004). Multiple Classifier Systems. LNCS 3077. New York: Springer.

    Google Scholar 

  51. Kittler, J., Duin, R., and Hatef, M.(1998). On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, pp. 226-239.

    Article  Google Scholar 

  52. Knerr, S., Augustin, E., Baret, O., and Price, D. (1998). Hidden Markov model based word recognition and its application to legal amount reading from checks. Computer Vision and Image Understanding, 70, pp. 404-419.

    Article  Google Scholar 

  53. Kressel, U. and Schürmann, J. (1997). Pattern classification techniques based on function approximation. In: H. Bunke and P.S.P. Wang (Eds.). Handbook of Character Recognition and Document Image Analysis. World Scientific, pp. 49-78.

    Google Scholar 

  54. Kundu, A. (1997). Handwritten word recognition using hidden Markov model. In: H. Bunke and P.S.P. Wang (Eds.). Handbook of Character Recog-nition and Document Image Analysis. Singapore: World Scientific, Chapter 6, pp. 157-182.

    Google Scholar 

  55. Kundu, A., He, Y., and Chen, M.-Y. (1998). Alternatives to variable du-ration HMM in handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, pp. 1275-1280.

    Article  Google Scholar 

  56. Lee, D.-H. and Cho, H.-G. (1998). A new synthesizing method for hand-writing Korean scripts. International Journal of Pattern Recognition and Artificial Intelligence, 12(1), pp. 46-61.

    Google Scholar 

  57. Lorette, G. (1999). Handwriting recognition or reading? What is the situa-tion at the dawn of the 3rd millennium? International Journal on Document Analysis and Recognition, 2, pp. 2-12.

    Article  Google Scholar 

  58. Lucas, S. and Amiri, A. (1995). Recognition of chain-coded handwritten character images with scanning n-tuple method. Electronic Letters, 31, pp. 2088-2089.

    Article  Google Scholar 

  59. Madhvanath, S. and Govindaraju, V. (1999). Local reference lines for hand-written phrase recognition. Pattern Recognition, 32(12), pp. 2021-2028.

    Article  Google Scholar 

  60. Madhvanath, S. and Govindaraju, V. (2001). Local reference lines for hand-written phrase recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, pp. 149-164.

    Article  Google Scholar 

  61. Maergner, V. and Pechwitz, M. (2001). Synthetic data for arabic OCR sys-tem development. Sixth International Conference on Document Analysis and Recognition, Seattle WA, USA, pp. 1159-1163.

    Google Scholar 

  62. Marti, U.-V. and Bunke, H. (2001). Text line segmentation and word recognition in a system for general writer independent handwriting recogni-tion. Sixth International Conference on Document Analysis and Recognition, Seattle WA, USA, pp. 159-163.

    Google Scholar 

  63. Marti, U.-V. and Bunke, H. (2001). Use of positional information in se-quence alignment for multiple classifier combination. In: J. Kittler and F. Roli (Eds.). International Workshop on Multiple Classifier Systems. LNCS 2096. New York: Springer, pp. 388-398.

    Google Scholar 

  64. Marti, U.-V. and Bunke, H. (2001). Using a statistical language model to improve the performance of an HMM-based cursive handwriting recognition system. International Journal of Pattern Recognition and Artificial Intelligence, 15, pp. 65-90.

    Article  Google Scholar 

  65. Marti, U.-V. and Bunke, H. (2002). The IAM-database: an English sen-tence database for off-line handwriting recognition. International Journal on Document Analysis and Recognition, 5, pp. 39-46.

    Article  MATH  Google Scholar 

  66. Mori, M., Suzuki, A., Siho, A., and Ohtsuka, S. (2000). Generating new samples from handwritten numerals based on point correspondence. Sev-enth International Workshop on Frontiers in Handwriting Recognition, Amsterdam, The Netherlands, , pp. 281-290.

    Google Scholar 

  67. Mori, S., Nishida, H., and Yamada, H. (1999). Optical Character Recogni-tion. New York: John Wiley and Sons, Inc.

    Google Scholar 

  68. Morita, M.E., Facon, J., Bortolozzi, F., Garnes, S., and Sabourin, R. (1999). Mathematical morphology and weighted least squares to correct handwrit-ing baseline skew. Fifth International Conference on Document Analysis and Recognition, Bangalore, India, pp. 430-433.

    Google Scholar 

  69. O’Gorman, L. and Kasturi, R. (Eds.) (1995). Document Image Analysis. New York: IEEE Computer Society Press.

    Google Scholar 

  70. Park, H.-S., Sui, B.-K., Moon, J., and Lee, S.-W. (2001). A 2-D HMM method for offline handwritten character recognition. International Journal of Pattern Recognition and Artificial Intelligence, 15, pp. 91-105.

    Article  Google Scholar 

  71. Plamondon, R. and Guerfali, W. (1998). The generation of handwriting with delta-lognormal synergies. Biological Cybernetics, 78, pp. 119-132.

    Article  MATH  Google Scholar 

  72. Plamondon, R. and Srihari, S. (2000). On-line and off-line handwriting recognition: a comprehensive survey. IEEE Transactions on Pattern Analy-sis and Machine Intelligence, 22, pp. 63-84.

    Article  Google Scholar 

  73. Rabiner, L.R.(1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), pp. 257-285.

    Article  Google Scholar 

  74. Rahmann, A.F.R., Alam, H., and Fairhurst, M.C. (2002). Multiple classifier combination for character recognition: revisiting the majority voting system and its variations. In: D. Lopresti, J. Hu, and R. Kashi (Eds.). Fifth Inter-national Workshop on Document Analysis Systems. LNCS 2423. New York: Springer, pp. 167-178.

    Google Scholar 

  75. Rahmann, A.F.R. and Fairhurst, M.C. (2000). Multiple expert classification: a new methodology for parallel decision fusion. International Journal on Document Analysis and Recognition, pp. 40-55.

    Google Scholar 

  76. Rosenfeld, R. (2000). Two decades of statistical language modeling: where do we go from here? Proceedings of the IEEE, 88, pp. 1270-1278.

    Article  Google Scholar 

  77. Rowley, H.A., Goyal, M., and Bennet, J. (2002). The effect of large training set sizes on online Japanese Kanji and English cursive recognizers. Eighth International Workshop on Frontiers in Handwriting Recognition, Niagraon-the-Lake, Canada, , pp. 36-40.

    Google Scholar 

  78. Saito, T., Yamada, H., and Yamamoto, K. (1985). On the data base ETL 9 of handprinted characters in JIS chinese characters and its analysis. IEICE Transactions, J68-D(4), pp. 757-764.

    Google Scholar 

  79. Saon, G. (1999). Cursive word recognition using a random field based hidden Markov model. International Journal of Pattern Recognition and Artificial Intelligence, 1, pp. 199-208.

    Google Scholar 

  80. Sayre, K.M. (1973). Machine recognition of handwritten words: a project report. Pattern Recognition, 5(3), pp. 213-228.

    Article  Google Scholar 

  81. Schürmann, J. (1996). Pattern Classification - A Unified View of Statistical and Neural Approaches. New York: John Wiley and Sons, Inc.

    Google Scholar 

  82. Senior, A.W. and Robinson, A.J. (1998). An off-line cursive handwriting recognition system. IEEE Transactions on Patten Analysis and Machine Intelligence, 20(3), pp. 309-321.

    Article  Google Scholar 

  83. Setlur, S. and Govindaraju, V. (1994). Generating manifold samples from a handwritten word. Pattern Recognition Letters, 15, 901-905.

    Article  Google Scholar 

  84. Simon, J.-C. (1992). Off-line cursive word recognition. Proceedings of the IEEE, 80(7), pp. 1150-1161.

    Article  Google Scholar 

  85. Sirlantzkis, K., Fairhurst, M.C., and Hoque, M.S. (2001). Genetic algorithm for multiple classifier configuration: a case study in character recognition. In: J. Kittler and F. Roli (Eds.). Second International Workshop on Multiple Classifier Systems, pp. 99-108.

    Google Scholar 

  86. Smith, S.J. (1994). Handwritten character classification using nearest neigh-bour in large databases. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16, pp. 915-919.

    Article  Google Scholar 

  87. Sridar, M. and Kimura, F. (1997). Segmentation-based cursive handwriting recognition. In: H. Bunke and P.S.P. Wang (Eds.). Handbook of Charac-ter Recognition and Document Image Analysis. Singapore: World Scientific, pp. 123-156.

    Google Scholar 

  88. Srihari, S.N. (2000). Handwritten address interpretation: a task of many pattern recognition problems. International Journal of Pattern Recognition and Artificial Intelligence, 14, pp. 663-674.

    Article  Google Scholar 

  89. Steinherz, T., Rivlin, E., and Intrator, N. (1999). Off-line cursive word recognition - a survey. International Journal on Document Analysis and Recognition, 2, pp. 90-110.

    Article  Google Scholar 

  90. Suen, C. and Wang, P.S.P. (1994). Thinning Methodologies for Pattern Recognition. Singapore: World Scientific.

    MATH  Google Scholar 

  91. Suen, C.Y., Nadal, C., Legault, R., Mai, T.A., and Lam, L. (1992). Com-puter recognition of unconstrained handwritten numerals. Proceedings of the IEEE, 7(80), pp. 1162-1180.

    Article  Google Scholar 

  92. Varga, T. and Bunke, H. (2003). Generation of synthetic training data for an HMM-based handwriting recognition system. Seventh International Confer-ence on Document Analysis and Recognition, Edinburgh, Scotland, Volume 1, pp. 618-622.

    Google Scholar 

  93. Varga, T. and Bunke, H. (2004). Off-line handwriting recognition using syn-thetic training data produced by means of a geometrical distortion model. International Journal of Pattern Recognition and Artificial Intelligence, 18 (7), pp. 1285-1302.

    Article  Google Scholar 

  94. Velek, O. and Nakagawa, M. (2002). The impact of large training sets on the recognition rate of off-line Japanese Kanji character classifiers. Proceedings of the Fifth International Workshop on Document Analysis Systems (DAS 2002), pp. 106-109.

    Google Scholar 

  95. Viard-Gaudin, C., Lallican, P.M., Knerr, S., and Binter, P. (1999). The IRESTE on/off (ironoff dual handwriting database). Fifth International Conference on Document Analysis and Recognition 99, Bangalore, India, pp. 455-458.

    Google Scholar 

  96. Vinciarelli, A. (2002). A survey on off-line cursive word recognition. Pattern Recognition, 35, pp. 1433-1446.

    Article  MATH  Google Scholar 

  97. Vinciarelli, A., Bengio, S., and Bunke, H. (2004). Offline recognition of unconstrained handwritten texts using HMMs and statistical language models. IEEE Transactions PAMI, 26, pp. 709-720.

    Google Scholar 

  98. Vinciarelli, A. and Luettin, J.(2000). Off-line cursive script recognition based on continuous density HMM. Seventh International Workshop on Frontiers in Handwriting Recognition, Amsterdam, The Netherlands, pp. 493-498.

    Google Scholar 

  99. Wang, J., Wu, C., Xu, Y.-Q., Shum, H.-Y., and Ji, L. (2002). Learning-based cursive handwriting synthesis. Eighth International Workshop on Frontiers in Handwriting Recognition, Niagra-on-the-Lake, Canada, pp. 157-162.

    Google Scholar 

  100. Wang, W., Brakensiek, A., and Rigoll, G. (2002). Combination of multiple classifiers for handwritten word recognition. Eighth International Workshop on Frontiers in Handwriting Recognition, Niagra-on-the-Lake, Canada, pp. 117-122.

    Google Scholar 

  101. Wilkinson, R.A., Geist, J., Janet, S., Grother, P.J., Burges, C.J.C., Creecy, R., Hammond, B., Hull, J.J., Larsen, N.W., Vogl, T.P., and Wilson, C.L. (1992). The First Census Optical Character Recognition Systems Conference #NISTIR 4912. Gaithersburg, MD: The US Bureau of Census and the National Institute of Standards and Technology.

    Google Scholar 

  102. Xi, D. and Lee, S.-W. (2005). Extraction of reference lines and items from form document images with complicated background. Pattern Recognition, 38(2), pp. 289-305.

    Article  MATH  Google Scholar 

  103. El Yacoubi, A., Gilloux, M., Sabourin, R., and Suen, C. (1999). An HMMbased approach for off-line unconstrained handwritten word modeling and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, pp. 752-760.

    Article  Google Scholar 

  104. Ye, X., Cheriet, M., and Suen, C.Y. (2001). A framework for combining numeric string recognizers. Sixth International Conference on Document Analysis and Recognition, Seattle, WA, USA, pp. 716-720.

    Google Scholar 

  105. Ye, X., Cheriet, M., and Suen, C.Y. (2001). A generic method of cleaning and enhancing handwritten data from business forms. International Journal on Document Analysis and Recognition, 4, pp. 84-96.

    Article  Google Scholar 

  106. Zimmermann, M. and Bunke, H. (2002). Automatic segmentation of the IAM off-line handwritten English text database. Sixteenth International Conference on Pattern Recognition, Quebec, Canada, Volume 4, pp. 35-39.

    Google Scholar 

  107. Zimmermann, M., Chappelier, J.-C., and Bunke, H. (2003). Parsing n-best lists of handwritten sentences. Seventh International Conference on Document Analysis and Recognition, Edinburgh, Scotland, Volume 1, pp. 572-576.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bunke, H., Varga, T. (2007). Off-Line Roman Cursive Handwriting Recognition. In: Chaudhuri, B.B. (eds) Digital Document Processing. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84628-726-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-726-8_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-501-1

  • Online ISBN: 978-1-84628-726-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics