Skip to main content

Mechanoelectrical Interactions and Their Role in Electrical Function of the Heart

  • Chapter
Electrical Diseases of the Heart

Abstract

The heart is an electrically controlled and chemically powered mechanical pump. There are complex interactions between cardiac electrophysiology, metabolism, and mechanics, with a multitude of interdigitating regulatory loops. This chapter will focus on the cross-talk between electrical and mechanical activity of the heart, and in particular its relevance for heart rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohl P, Hunter P, Noble D. Stretch-induced changes in heart rate and rhythm: Clinical observations, experiments and mathematical models. Prog Biophys Mol Biol 1999;71(1):91–138.

    Article  PubMed  CAS  Google Scholar 

  2. Katz AM, Katz PB. Homogeneity out of heterogeneity. Circulation 1989;79:712–717.

    PubMed  CAS  Google Scholar 

  3. Bers DM. Excitation-Contraction Coupling and Cardiac Contractile Force, 2nd ed. Boston: Kluwer Academic Publishers, 2001.

    Google Scholar 

  4. Eisner DA, Diaz ME, Li Y, O’Neill SC, Trafford AW. Stability and instability of regulation of intracellular calcium. Exp Physiol 2005;90(1):3–12.

    Article  PubMed  CAS  Google Scholar 

  5. Linz KW, Meyer R. Control of L-type calcium current during the action potential of guinea-pig ventricular myocytes. J Physiol 1998;513(Pt. 2): 425–442.

    Article  PubMed  CAS  Google Scholar 

  6. Alseikhan BA, DeMaria CD, Colecraft HM, Yue DT. Engineered calmodulins reveal the unexpected eminence of Ca2+ channel inactivation in controlling heart excitation. Proc Natl Acad Sci USA 2002; 99(26):17185–17190.

    Article  PubMed  CAS  Google Scholar 

  7. Shannon TR, Ginsburg KS, Bers DM. Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intra-sarcoplasmic reticulum calcium concentration. Biophys J 2000;78(1): 334–343.

    Google Scholar 

  8. Trafford AW, Diaz ME, Eisner DA. A novel, rapid and reversible method to measure Ca buffering and time-course of total sarcoplasmic reticulum Ca content in cardiac ventricular myocytes. Pflugers Arch 1999;437(3):501–503.

    Article  PubMed  CAS  Google Scholar 

  9. Gordon AM, Regnier M, Homsher E. Skeletal and cardiac muscle contractile activation: Tropomyosin “rocks and rolls”. News Physiol Sci 2001;16: 49–55.

    PubMed  CAS  Google Scholar 

  10. Solaro RJ, Rarick HM. Troponin and tropomyosin: Proteins that switch on and tune in the activity of cardiac myofilaments. Circ Res 1998;83(5):471–480.

    PubMed  CAS  Google Scholar 

  11. Rice JJ, de Tombe PP. Approaches to modeling crossbridges and calcium-dependent activation in cardiac muscle. Prog Biophys Mol Biol 2004;85(2–3):179–195.

    Article  PubMed  CAS  Google Scholar 

  12. Allen DG, Kurihara S. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 1982;327:79–94.

    PubMed  CAS  Google Scholar 

  13. Bremel RD, Weber A. Cooperation within actin filament in vertebrate skeletal muscle. Nat New Biol 1972;238(82):97–101.

    PubMed  CAS  Google Scholar 

  14. Hofmann PA, Fuchs F. Effect of length and crossbridge attachment on Ca2+ binding to cardiac troponin C. Am J Physiol Cell Physiol 1987;253(1Pt. 1): C90–96.

    CAS  Google Scholar 

  15. Kad NM, Kim S, Warshaw DM, VanBuren P, Baker JE. Single-myosin crossbridge interactions with actin filaments regulated by troponin-tropomyosin. Proc Natl Acad Sci USA 2005;102(47):16990–16995.

    Article  PubMed  CAS  Google Scholar 

  16. Daniel TL, Trimble AC, Chase PB. Compliant realignment of binding sites in muscle: Transient behavior and mechanical tuning. Biophys J 1998; 74(4):1611–1621.

    PubMed  CAS  Google Scholar 

  17. Dobesh DP, Konhilas JP, de Tombe PP. Cooperative activation in cardiac muscle: Impact of sarcomere length. Am J Physiol Heart Circ Physiol 2002;282(3): H1055–1062.

    PubMed  CAS  Google Scholar 

  18. Wannenburg T, Heijne GH, Geerdink JH, Van Den Dool HW, Janssen PM, De Tombe PP. Cross-bridge kinetics in rat myocardium: Effect of sarcomere length and calcium activation. Am J Physiol Heart Circ Physiol 2000;279(2):H779–H790.

    PubMed  CAS  Google Scholar 

  19. McDonald KS, Moss RL. Osmotic compression of single cardiac myocytes eliminates the reduction in Ca2+ sensitivity of tension at short sarcomere length. Circ Res 1995;77(1):199–205.

    PubMed  CAS  Google Scholar 

  20. Cazorla O, Vassort G, Garnier D, Le Guennec JY. Length modulation of active force in rat cardiac myocytes: Is titin the sensor? J Mol Cell Cardiol 1999;31(6):1215–1227.

    Article  PubMed  CAS  Google Scholar 

  21. Konhilas JP, Irving TC, de Tombe PP. Lengthdependent activation in three striated muscle types of the rat. J Physiol 2002;544(Pt. 1):225–236.

    Article  PubMed  CAS  Google Scholar 

  22. Konhilas JP, Irving TC, de Tombe PP. Frank-Starling law of the heart and the cellular mechanisms of length-dependent activation. Pflugers Arch 2002;445(3):305–310.

    Article  PubMed  CAS  Google Scholar 

  23. Parmley WW, Chuck L. Length-dependent changes in myocardial contractile state. Am J Physiol 1973; 224:1195–1199.

    PubMed  CAS  Google Scholar 

  24. Kentish JC, Wrzosek A. Changes in force and cytosolic Ca2+ concentration after length changes in isolated rat ventricular trabeculae. J Physiol 1998; 506(Pt. 2):431–444.

    Article  PubMed  CAS  Google Scholar 

  25. Allen DG, Nichols CG, Smith GL. The effects of changes in muscle length during diastole on the calcium transient in ferret ventricular muscle. J Physiol 1988;406:359–370.

    PubMed  CAS  Google Scholar 

  26. Nichols CG. The influence of “diastolic” length on the contractility of isolated cat papillary muscle. J Physiol 1985;361:269–279.

    PubMed  CAS  Google Scholar 

  27. Calaghan SC, Belus A, White E. Do stretch-induced changes in intracellular calcium modify the electrical activity of cardiac muscle? Prog Biophys Mol Biol 2003;82(1–3):81–95.

    Article  PubMed  CAS  Google Scholar 

  28. Cingolani HE, Alvarez BV, Ennis IL, Camilion de Hurtado MC. Stretch-induced alkalinization of feline papillary muscle: An autocrine-paracrine system. Circ Res 1998;83(8):775–780.

    PubMed  CAS  Google Scholar 

  29. Alvarez BV, Perez NG, Ennis IL, Camilion de Hurtado MC, Cingolani HE. Mechanisms underlying the increase in force and Ca(2+) transient that follow stretch of cardiac muscle: A possible explanation of the Anrep effect. Circ Res 1999;85(8): 716–722.

    PubMed  CAS  Google Scholar 

  30. Tavi P, Han C, Weckstrom M. Mechanisms of stretch-induced changes in [Ca2+]i in rat atrial myocytes: Role of increased troponin C affinity and stretch-activated ion channels. CircRes 1998;83(11): 1165–1177.

    CAS  Google Scholar 

  31. Janssen PM, de Tombe PP. Uncontrolled sarcomere shortening increases intracellular Ca2+ transient in rat cardiac trabeculae. Am J Physiol Heart Circ Physiol 1997;272(4Pt. 12):H1892–H1897.

    CAS  Google Scholar 

  32. Poggesi C, Tesi C, Stehle R. Sarcomeric determinants of striated muscle relaxation kinetics. Pflugers Arch 2005;449(6):505–517.

    Article  PubMed  CAS  Google Scholar 

  33. Bassani JW, Yuan W, Bers DM. Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am J Physiol Cell Physiol 1995; 268(5Pt. 1):C1313–C1319.

    CAS  Google Scholar 

  34. Puglisi JL, Bassani RA, Bassani JW, Amin JN, Bers DM. Temperature and relative contributions of Ca transport systems in cardiac myocyte relaxation. Am J Physiol Heart Circ Physiol 1996;270(5Pt. 2): H1772–H1888.

    CAS  Google Scholar 

  35. Janssen PM, Stull LB, Marban E. Myofilament properties comprise the rate-limiting step for cardiac relaxation at body temperature in the rat. Am J Physiol Heart Circ Physiol 2002;282(2):H499–H507.

    PubMed  CAS  Google Scholar 

  36. Janssen PM, Hunter WC. Force, not sarcomere length, correlates with prolongation of isosarcometric contraction. Am J Physiol Heart Circ Physiol 1995;269(2Pt. 2):H676–685.

    CAS  Google Scholar 

  37. Franz MR, Cima R, Wang D, Profitt D, Kurz R. Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation 1992;86:968–978.

    PubMed  CAS  Google Scholar 

  38. Craelius W. Stretch-activation of rat cardiac myocytes. Exp Physiol 1993;78:411–423.

    PubMed  CAS  Google Scholar 

  39. Kohl P, Bollensdorff C, Garny A. Mechano-sensitive ion channels in the heart: Experimental and theoretical models. Exp Physiol 2006;91:307–321.

    Article  PubMed  Google Scholar 

  40. Craelius W, Chen V, El-Sherif N. Stretch activated ion channels in ventricular myocytes. BioSci Rep 1988;8:407–414.

    Article  PubMed  CAS  Google Scholar 

  41. Baumgarten CM, Clemo HF. Swelling-activated chloride channels in cardiac physiology and pathophysiology. Prog Biophys Mol Biol 2003;82(1–3): 25–42.

    Article  PubMed  CAS  Google Scholar 

  42. Cooper PJ, Lei M, Cheng LX, Kohl P. Axial stretch increases spontaneous pacemaker activity in rabbit isolated sino-atrial node cells. J Appl Physiol 2000; 89:2099–2104.

    PubMed  CAS  Google Scholar 

  43. Hansen DE, Borganelli M, Stacy GPJ, Taylor LK. Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiarrhythmic action. Circ Res 1991;69:820–831.

    PubMed  CAS  Google Scholar 

  44. White E, Le Guennec J-Y, Nigretto JM, Gannier F, Argibay JA, Garnier D. The effects of increasing cell length on auxotonic contractions; membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Exp Physiol 1993;78:65–78.

    PubMed  CAS  Google Scholar 

  45. Zeng T, Bett GCL, Sachs F. Stretch-activated whole cell currents in adult rat cardiac myocytes. Am J Physiol Heart Circ Physiol 2000;278:H548–H557.

    PubMed  CAS  Google Scholar 

  46. Zabel M, Coller B, Franz MR. Amplitude and polarity of stretch-induced systolic and diastolic voltage changes depend on the timing of stretch: A means to characterize stretch-activated channels in the intact heart. Pacing Clin Electrophysiol 1993;16: 886.

    Article  Google Scholar 

  47. Levine JH, Guarnieri T, Kadish AH, White RI, Calkins H, Kan JS. Changes in myocardial repolarization in patients undergoing balloon valvuloplasty for congenital pulmonary stenosis: Evidence for contraction-excitation feedback in humans. Circulation 1988;77:70–77.

    PubMed  CAS  Google Scholar 

  48. Vila-Petroff MG, Kim SH, Pepe S, Dessy C, Marbán E, Balligand J-L, Sollott SJ. Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 2001; 3:867–873.

    Article  CAS  Google Scholar 

  49. Pogwizd SM, Bers DM. Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med 2004;14(2):61–66.

    Article  PubMed  CAS  Google Scholar 

  50. Ter Keurs HE, Wakayama Y, Miura M, Stuyvers BD, Boyden PA, Landesberg A. Spatial nonuniformity of contraction causes arrhythmogenic Ca2+ waves in rat cardiac muscle. Ann NYAcad Sci 2005;1047:345–365.

    Article  CAS  Google Scholar 

  51. Giordano FJ, Gerber H-P, Williams S-P, et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci USA 2001;98:5780–5785.

    Article  PubMed  CAS  Google Scholar 

  52. Camelliti P, Green CR, LeGrice I, Kohl P. Fibroblast network in rabbit sino-atrial node: Structural and functional identification of homo-and heterologous cell coupling. Circ Res 2004;94:828–835.

    Article  PubMed  CAS  Google Scholar 

  53. Bao L, Sachs F, Dahl G. Connexins are mechanosensitive. Am J Physiol Cell Physiol 2004;278: C1389–C1395.

    Article  CAS  Google Scholar 

  54. Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, Baumgarten CM, Sachs F. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 2000;115: 583–598.

    Article  PubMed  CAS  Google Scholar 

  55. Kohl P, Sachs F, Franz MR. Cardiac Mechano-Electric Feedback and Arrhythmias: From Pipette to Patient. Philadelphia: Elsevier (Saunders), 2005.

    Google Scholar 

  56. Holubarsch C, Ruf T, Goldstein DJ, et al. Existence of the Frank-Starling mechanism in the failing human heart: Investigations on the organ, tissue, and sarcomere levels. Circulation 1996;94:683–689.

    PubMed  CAS  Google Scholar 

  57. Slovut DP, Wenstrom JC, Moeckel RB, Wilson RF, Osborn JW, Abrams JH. Respiratory sinus dysrhythmia persists in transplanted human hearts following autonomic blockade. Clin Exp Pharmacol Physiol 1998;25:322–330.

    Article  PubMed  CAS  Google Scholar 

  58. Donald DE, Shepherd JT. Reflexes from the heart and lungs: Physiological curiosities or important regulatorymechanisms. CardiovascRes1978;12:449–469.

    Article  Google Scholar 

  59. Schott E. Über Ventrikelstillstand (Adams-Stokes’sche Anfälle) nebst Bemerkungen über andersartige Arhythmien passagerer Natur. Deutsches Archiv Klinische Medizin 1920;131:211–229.

    Google Scholar 

  60. Klumbies A, Paliege R, Volkmann H. Mechanical energy stimulation in asystole and extreme bradycardia [in German]. Z Gesamte Exp Medizin 1988; 43:348–352.

    CAS  Google Scholar 

  61. Zeh E, Rahner E. Die manuelle extrathorakale Stimulation des Herzens: zur Technik und Wirkung des “Prekordialschlages”. Z Kardiol 1978;67:299–304.

    PubMed  CAS  Google Scholar 

  62. Wild JB, Grover JD. The fist as a mechanical pacemaker. Lancet 1970;2:436–437.

    Article  PubMed  CAS  Google Scholar 

  63. Zoll PM, Belgard AH, Weintraub MJ, Frank HA. External mechanical cardiac stimulation. N Engl J Med 1976;294(23):1274–1275.

    PubMed  CAS  Google Scholar 

  64. Chan L, Reid C, Taylor B. Effect of three emergency pacing modalities on cardiac output in cardiac arrest due to ventricular asystole. Resuscitation 2002;52(1):117–119.

    Article  PubMed  Google Scholar 

  65. International Liaison Committee on Resuscitation. 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Part 4: Advanced Life Support. Resuscitation 2005;67:213–247.

    Article  Google Scholar 

  66. Pennington JE, Taylor J, Lown B. Chest thump for reverting ventricular tachycardia. N Engl J Med 1970;283:1192–1195.

    PubMed  CAS  Google Scholar 

  67. Befeler B. Mechanical stimulation of the heart: Its therapeutic value in tachyarrhythmias. Chest 1978; 73(6):832–838.

    Article  PubMed  CAS  Google Scholar 

  68. Kohl P, King AM, Boulin C. Antiarrhythmic effects of acute mechanical stimulation. In: Kohl P, Sachs F, Franz MR, Eds. Cardiac Mechano-Electric Feedback and Arrhythmias: From Pipette to Patient. Philadelphia: Elsevier (Saunders), 2005:304–314.

    Google Scholar 

  69. Barrett JS. Chest thumps and the heart beat. N Engl J Med 1971;284(7):393.

    Google Scholar 

  70. Kohl P, Bollensdorff C, Garny A. Effects of mechano-sensitive ion channels on ventricular electrophysiology: Experimental and theoretical models. Exp Physiol 2006;91:307–321.

    Article  PubMed  Google Scholar 

  71. van Wagoner DR, Lamorgese M. Ischemia potentiates the mechanosensitive modulation of atrial ATP-sensitive potassium channels. Ann NY Acad Sci 1994;723:392–395.

    Article  PubMed  Google Scholar 

  72. Caldwell G, Millar G, Quinn E, Vincent R, Chamberlain DA. Simple mechanical methods for cardioversion: Defence of the precordial thump and cough version. Br Med J 1985;291:627–630.

    Article  CAS  Google Scholar 

  73. International Liaison Committee on Resuscitation. 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Part 3: Defibrillation. Resuscitation 2005;67:203–211.

    Article  Google Scholar 

  74. Schotten U, Neuberger H-R, Allessie MA. The role of atrial dilatation in the domestication of atrial fibrillation. Prog Biophys Mol Biol 2003;82(1–3): 151–162.

    Article  PubMed  Google Scholar 

  75. Waxman MB, Wald RW, Finley JP, Bonet JF, Downar E, Sharma AD. Valsalva termination of ventricular tachycardia. Circulation 1980;62:843–851.

    PubMed  CAS  Google Scholar 

  76. Ambrosi P, Habib G, Kreitmann B, Faugère G, Métras D. Valsalva manoeuvre for supraventricular tachycardia in transplanted heart recipient. Lancet 1995;346:713.

    Article  PubMed  CAS  Google Scholar 

  77. Bode F, Sachs F, Franz MR. Tarantula peptide inhibits atrial fibrillation. Nature 2001;409:35–36.

    Article  PubMed  CAS  Google Scholar 

  78. Strobel JS, Kay GN, Walcott GP, Smith WM, Ideker RE. Defibrillation efficacy with endocardial electrodes is influenced by reductions in cardiac preload. J Intervent Cardiac Electrophysiol 1997; 1(2):95–102.

    Article  CAS  Google Scholar 

  79. Trayanova N, Li W, Eason J, Kohl P. The effect of stretch-activated channels on defibrillation efficacy: A simulation study. Heart Rhythm 2004;1: 67–77.

    Article  PubMed  Google Scholar 

  80. Maron BJ, Link MS, Wang PJ, Estes III NAM. Clinical profile of Commotio cordis: An under appreciated cause of sudden death in the young during sports and other activities. J Cardiovasc Electrophysiol 1999;10:114–120.

    Article  PubMed  CAS  Google Scholar 

  81. Riedinger F. Über Brusterschütterung. In: Festschrift zur dritten Saecularfeier der Alma Julia Maximiliana Leipzig. Leipzig: Verlag von F.C.W. Vogel, 1882:221–234.

    Google Scholar 

  82. Schlomka G. Commotio cordis und ihre Folgen. Die Einwirkung stumpfer Brustwandtraumen auf das Herz. Ergebnisse inneren Med Kinderheilkunde 1934;47:1–91.

    Google Scholar 

  83. Link MS, Wang PJ, Pandian NG, et al. An experimental model of sudden cardiac death due to lowenergy chest-wall impact (Commotio cordis). N Engl J Med 1998;338:1805–1811.

    Article  PubMed  CAS  Google Scholar 

  84. Link MS, Wang PJ, VanderBrink BA, Avelar E, Pandian NG, Maron BJ, Estees III M. Selective activation of the K+ ATP channel is a mechanism by which sudden death is produced by low-energy chest-wall impact (Commotio cordis). Circulation 1999;100:413–418.

    PubMed  CAS  Google Scholar 

  85. Kohl P, Nesbitt AD, Cooper PJ, Lei M. Sudden cardiac death by Commotio cordis: Role of mechano-electric feedback. Cardiovasc Res 2001;50(2):280–289.

    Article  PubMed  CAS  Google Scholar 

  86. Towe BC, Rho R. Ultrasonic cardiac pacing in the porcine model. IEEE Trans Biomed Eng 2006;53: 1446–1448.

    Article  PubMed  Google Scholar 

  87. Cheng A, Nguyen TC, Malinowski M, Langer F, Liang D, Daughters GT, Ingels NB Jr, Miller DC. Passive ventricular constraint prevents transmural shear strain progression in left ventricle remodeling. Circulation 2006;114:I79–I86.

    Article  PubMed  CAS  Google Scholar 

  88. Boriani G, Gasparini M, Lunati M, et al. Characteristics of ventricular tachyarrhythmias occurring in ischemic versus nonischemic patients implanted with a biventricular cardioverter-defibrillator for primary or secondary prevention of sudden death. Am Heart J 2006;152:527–536.

    Article  PubMed  Google Scholar 

  89. Sabbah HN, Gupta RC, Rastogi S, Mishra S, Mika Y, Burkhoff D. Treating heart failure with cardiac contractility modulation electrical signals. Curr Heart Fail Rep 2006;3:21–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Jeremy Rice, J., Kohl, P. (2008). Mechanoelectrical Interactions and Their Role in Electrical Function of the Heart. In: Gussak, I., Antzelevitch, C., Wilde, A.A.M., Friedman, P.A., Ackerman, M.J., Shen, WK. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-84628-854-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-854-8_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-853-1

  • Online ISBN: 978-1-84628-854-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics