Skip to main content

Characterisations of Human Hands

  • Chapter
Control Theory of Multi-fingered Hands
  • 638 Accesses

Abstract

It is said that the hand is an agency of the brain. It reflects activities of the brain and thereby it is a sort of mirror to the mind. It is the hand that is the most intriguing and most human of appendages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Napier J (1993) Hands (Revised by Tuttle RH). Princeton Univ. Press, Princeton, New Jersey, USA

    Google Scholar 

  2. Mackenzie CL, Iberall T (1994) The Grasping Hands. North-Holland, Amsterdam, The Netherlands

    Google Scholar 

  3. IEEE Spectrum (2005), October issue

    Google Scholar 

  4. Bernstein N (1967) Coordination and Regulation of Movements. Pergamon, New York, USA

    Google Scholar 

  5. Latash ML, Turvey MT (eds.) (1996) Dexterity and Its Development. Lawrence Erlbaum, Mahmash, New Jersey, USA

    Google Scholar 

  6. Feldman AG (1966) Functional tuning of the nervous system with control of movement or maintenance of steady posture. III. Mechanographic analysis of the execution by man of the simplest motor tasks. Biofizika 11:766–775

    Google Scholar 

  7. Feldman AG (1986) Once more on the equilibrium-point hypothesis (γ-model) for motor control. J. Motor Behav. 18:17–54

    Google Scholar 

  8. Bizzi E, Polit A, Morasso P (1976) Mechanisms underlying achievement of final head position. J. Neurophysiol. 39:435–444

    Google Scholar 

  9. Hogan N (1984) An organizing principle for a class of voluntary movements. J. Neurosci. 4:2745–2754

    Google Scholar 

  10. Morasso P (1981) Spatial control of arm movements. Exp. Brain Res. 42:223–227

    Article  Google Scholar 

  11. Ito M (1970) Neurophysiological aspects of the cerebellar motor control system. Int. J. Neurol. 7:162–176

    Google Scholar 

  12. Ito M (1972) Neural design of the cerebellar motor control system. Brain Res. 40:81–84

    Article  Google Scholar 

  13. Bizzi E et al. (1992) Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behav. Brain Sci. 15:603–613

    Google Scholar 

  14. Kawato M, Gomi H (1992) A computational model of four regions of the cerebellum based on feedback-error-learning. Biol. Cybernetics 68:95–103

    Article  Google Scholar 

  15. Thelen E, Smith LB (1995) A Dynamic Systems Approach to the Development of Cognition and Action. MIT Press, Cambridge, Massachusetts, USA

    Google Scholar 

  16. Thelen E et al. (1993) The transition to reaching: mapping intention and intrinsic dynamics: Developmental biodynamics: brain, body behavior connections. Child Devel. 64:1058–1098

    Article  Google Scholar 

  17. Arimoto S, Sekimoto M, Hashiguchi H, Ozawa R (2005) Natural resolution of ill-posedness of inverse kinematics for redundant robots: A challenge to Bernstein’s degrees-of-freedom problem. Adv. Robot. 19:401–434

    Article  Google Scholar 

  18. Arimoto S, Hashiguchi H, Sekimoto M, Ozawa R (2005) Generation of natural motions for redundant multi-joint systems: A differential-geometric approach based upon the principle of least actions. J. Robot. Syst. 22:583–605

    Article  MATH  Google Scholar 

  19. Arimoto S, Sekimoto M (2006) Human-like movements of robotic arms with redundant DOFs: Virtual spring/damper hypothesis to tackle the Bernstein problem. Proc. of the 2006 Int. Conf. on Robotics and Automation, May 15–19, Orlando, Florida, USA, 1860–1866

    Google Scholar 

  20. Arimoto S (1999) Robotics research toward explication of everyday physics. Int. J. Robot. Res. 18-11:1056–1063

    Article  Google Scholar 

  21. Simon H (1965) The Shape of Automation for Men and Management. Harper and Row, New York, USA

    Google Scholar 

  22. Minsky M (1977) Computation: Finite and Infinite Machines. Prentice-Hall, New York, USA

    Google Scholar 

  23. Graubard SR (ed.) (1989) The Artificial Intelligence Debate. The MIT Press, Boston, USA

    Google Scholar 

  24. Bicchi A (2000) Hands for dexterous manipulation and robust grasping: A difficult road towards simplicity. IEEE Trans. Robot. and Autom. 16-6:652–662

    Article  Google Scholar 

  25. Shimoga KB (1996) Robot grasp synthesis algorithms: A survey. Int. J. Robot. Res. 15-2:230–266

    Article  Google Scholar 

  26. Murray RM, Li Z, Sastry SS (1994) A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton, Florida, USA

    MATH  Google Scholar 

  27. Arimoto S (1996) Control Theory of Nonlinear Mechanical Systems: A Passivity-based and Circuit-theoretical Approach. Oxford Univ. Press, Oxford, UK

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2008). Characterisations of Human Hands. In: Control Theory of Multi-fingered Hands. Springer, London. https://doi.org/10.1007/978-1-84800-063-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-063-6_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-062-9

  • Online ISBN: 978-1-84800-063-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics