Skip to main content

Principles of Protein Recognition and Properties of Protein-protein Interfaces

  • Chapter
Protein-protein Interactions and Networks

Part of the book series: Computational Biology ((COBO,volume 9))

Abstract

In this chapter we address two aspects – the static physical interactions which allow the information transfer for the function to be performed; and the dynamic, i.e. how the information is transmitted between the binding sites in the single protein molecule and in the network. We describe the single protein molecules and their complexes; and the analogy between protein folding and protein binding. Eventually, to fully understand the interactome and how it performs the essential cellular functions, we have to put all together - and hierarchically progress through the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Argos, P. (1988) An investigation of protein subunit and domain interfaces. Protein Eng 2, 101–113.

    Article  Google Scholar 

  • Arkin, M. R., Randal, M., DeLano, W. L., Hyde, J., Luong, T. N., Oslob, J. D., Raphael, D. R., Taylor, L., Wang, J., McDowell, R. S., Wells, J. A., and Braisted, A. C. (2003) Binding of small molecules to an adaptive protein-protein interface. Proc Natl Acad Sci U S A 100, 1603–1608.

    Article  Google Scholar 

  • Batada, N. N., Hurst, L. D., and Tyers, M. (2006) Evolutionary and physiological importance of hub proteins. PLoS Comput Biol 2, e88.

    Article  Google Scholar 

  • Cheng, Y. S., Yin, F. H., Foundling, S., Blomstrom, D., and Kettner, C. A. (1990) Stability and activity of human immunodeficiency virus protease: comparison of the natural dimer with a homologous, single-chain tethered dimer. Proc Natl Acad Sci U S A 87, 9660–9664.

    Article  Google Scholar 

  • Daily, M. D., and Gray, J. J. (2007) Local motions in a benchmark of allosteric proteins. Proteins 67, 385-399.

    Article  Google Scholar 

  • Ekman, D., Light, S., Bjorklund, A. K., and Elofsson, A. (2006) What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? Genome Biol 7, R45.

    Article  Google Scholar 

  • Fetler, L., Kantrowitz, E. R., and Vachette, P. (2007) Direct observation in solution of a preexisting structural equilibrium for a mutant of the allosteric aspartate transcarbamoylase. Proc Natl Acad Sci U S A 104, 495–500.

    Article  Google Scholar 

  • Finkelstein, A. V., Badretdinov, A., and Gutin, A. M. (1995) Why do protein architectures have Boltzmann-like statistics? Proteins 23, 142–150.

    Article  Google Scholar 

  • Grigoriev, A. (2003) On the number of protein-protein interactions in the yeast proteome. Nucleic Acids Res 31, 4157–4161.

    Article  Google Scholar 

  • Gunasekaran, K., Ma, B., and Nussinov, R. (2004) Is allostery an intrinsic property of all dynamic proteins? Proteins 57, 433–443.

    Article  Google Scholar 

  • Han, J. D., Bertin, N., Hao, T., Goldberg, D. S., Berriz, G. F., Zhang, L. V., Dupuy, D., Walhout, A. J., Cusick, M. E., Roth, F. P., and Vidal, M. (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 88–93.

    Article  Google Scholar 

  • Hawkins, R. J., and McLeish, T. C. (2004) Coarse-grained model of entropic allostery. Phys Rev Lett 93, 098104.

    Article  Google Scholar 

  • Homans, S. W. (2005) Probing the binding entropy of ligand-protein interactions by NMR. Chembiochem 6, 1585–1591.

    Article  Google Scholar 

  • Janin, J., and Chothia, C. (1990) The structure of protein-protein recognition sites. J Biol Chem 265, 16027-16030.

    Google Scholar 

  • Janin, J., Miller, S., and Chothia, C. (1988) Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol 204, 155–164.

    Article  Google Scholar 

  • Jones, S., and Thornton, J. M. (1996) Principles of protein-protein interactions. Proc Natl Acad Sci U S A 93, 13–20.

    Article  Google Scholar 

  • Keskin, O., Tsai, C. J., Wolfson, H., and Nussinov, R. (2004) A new, structurally nonredundant, diverse data set of protein-protein interfaces and its implications. Protein Sci 13, 1043–1055.

    Article  Google Scholar 

  • Kippen, A. D., Sancho, J., and Fersht, A. R. (1994) Folding of barnase in parts. Biochemistry 33, 3778–3786.

    Article  Google Scholar 

  • Kumar, S., Ma, B., Tsai, C. J., Wolfson, H., and Nussinov, R. (1999) Folding funnels and conformational transitions via hinge-bending motions. Cell Biochem Biophys 31, 141–164.

    Article  Google Scholar 

  • Liang, H., Sandberg, W. S., and Terwilliger, T. C. (1993) Genetic fusion of subunits of a dimeric protein substantially enhances its stability and rate of folding. Proc Natl Acad Sci U S A 90, 7010–7014.

    Article  Google Scholar 

  • Lindsley, J. E., and Rutter, J. (2006) Whence cometh the allosterome? Proc Natl Acad Sci U S A 103, 10533–10535.

    Article  Google Scholar 

  • Ma, B., Kumar, S., Tsai, C. J., and Nussinov, R. (1999) Folding funnels and binding mechanisms. Protein Eng 12, 713–720.

    Article  Google Scholar 

  • Mintseris, J., and Weng, Z. (2005) Structure, function, and evolution of transient and obligate protein-protein interactions. Proc Natl Acad Sci U S A 102, 10930–10935.

    Article  Google Scholar 

  • Moult, J., and Melamud, E. (2000) From fold to function. Curr Opin Struct Biol 10, 384–389.

    Article  Google Scholar 

  • Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247, 536–540.

    Google Scholar 

  • Nagano, N., Orengo, C. A., and Thornton, J. M. (2002) One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J Mol Biol 321, 741–765.

    Article  Google Scholar 

  • Nooren, I. M., and Thornton, J. M. (2003) Diversity of protein-protein interactions. Embo J 22, 3486–3492.

    Article  Google Scholar 

  • Orengo, C. A., Todd, A. E., and Thornton, J. M. (1999) From protein structure to function. Curr Opin Struct Biol 9, 374–382.

    Article  Google Scholar 

  • Popovych, N., Sun, S., Ebright, R. H., and Kalodimos, C. G. (2006) Dynamically driven protein allostery. Nat Struct Mol Biol 13, 831–838.

    Article  Google Scholar 

  • Swain, J. F., and Gierasch, L. M. (2006) The changing landscape of protein allostery. Curr Opin Struct Biol 16, 102–108.

    Article  Google Scholar 

  • Thornton, J. M., Todd, A. E., Milburn, D., Borkakoti, N., and Orengo, C. A. (2000) From structure to function: approaches and limitations. Nat Struct Biol 7 Suppl, 991–994.

    Article  Google Scholar 

  • Todd, A. E., Orengo, C. A., and Thornton, J. M. (2002) Sequence and structural differences between enzyme and nonenzyme homologs. Structure 10, 1435–1451.

    Article  Google Scholar 

  • Tsai, C. J., Kumar, S., Ma, B., and Nussinov, R. (1999) Folding funnels, binding funnels, and protein function. Protein Sci 8, 1181–1190.

    Article  Google Scholar 

  • Tsai, C. J., Ma, B., and Nussinov, R. (1999) Folding and binding cascades: shifts in energy landscapes. Proc Natl Acad Sci U S A 96, 9970–9972.

    Article  Google Scholar 

  • Valente, A. X., and Cusick, M. E. (2006) Yeast Protein Interactome topology provides framework for coordinated-functionality. Nucleic Acids Res 34, 2812–2819.

    Article  Google Scholar 

  • Wand, A. J. (2001) Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat Struct Biol 8, 926–931.

    Article  Google Scholar 

  • Wilson, C. J., Zhan, H., Swint-Kruse, L., and Matthews, K. S. (2007) The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding. Cell Mol Life Sci 64, 3–16.

    Article  Google Scholar 

  • Wu, L. C., Grandori, R., and Carey, J. (1994) Autonomous subdomains in protein folding. Protein Sci 3, 369–371.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Keskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Keskin, O., Gursoy, A., Nussinov, R. (2008). Principles of Protein Recognition and Properties of Protein-protein Interfaces. In: Panchenko, A., Przytycka, T. (eds) Protein-protein Interactions and Networks. Computational Biology, vol 9. Springer, London. https://doi.org/10.1007/978-1-84800-125-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-125-1_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-124-4

  • Online ISBN: 978-1-84800-125-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics