Skip to main content

Hyperspectral Image Analysis for Skin Tumor Detection

  • Chapter
Augmented Vision Perception in Infrared

Part of the book series: Advances in Pattern Recognition ((ACVPR))

Abstract

This chapter presents hyperspectral imaging of fluorescence for nonin-vasive detection of tumorous tissue on mouse skin. Hyperspectral imaging sensors collect two-dimensional (2D) image data of an object in a number of narrow, adjacent spectral bands. This high-resolution measurement of spectral information reveals a continuous emission spectrum for each image pixel useful for skin tumor detection. The hyperspectral image data used in this study are fluorescence intensities of a mouse sample consisting of 21 spectral bands in the visible spectrum of wavelengths ranging from 440 to 640 nm. Fluorescence signals are measured using a laser excitation source with the center wavelength of 337 nm. An acousto-optic tunable filter is used to capture individual spectral band images at a 10-nm resolution. All spectral band images are spatially registered with the reference band image at 490 nm to obtain exact pixel correspondences by compensating the offsets caused during the image capture procedure. The support vector machines with polynomial kernel functions provide decision boundaries with a maximum separation margin to classify malignant tumor and normal tissue from the observed fluorescence spectral signatures for skin tumor detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter's References

  1. Geller, D. Miller, G. Annas, M. Demierre, B. Gilchrest, and H. Koh, Melanoma incidence and mortality among U.S. whites, 1969–1999,Journal of the American Medical Association, 288(14):1719–1720, 2002.

    Article  Google Scholar 

  2. Cancer Facts and Figures 2005. American Cancer Society, Atlanta, 2005.

    Google Scholar 

  3. D. Landgrebe, Hyperspectral image data analysis as a high dimensional signal processing problem,IEEE Signal Processing Magazine19(1):17–28, 2002.

    Article  Google Scholar 

  4. K. Rajpoot, N. Rajpoot, and M. Turner,Hyperspectral Colon Tissue Cell Classification. SPIE Medical Imaging, San Diego, 2004.

    Google Scholar 

  5. D. Ferris, R. Lawhead, E. Dickman, N. Hotzapple, J. Miller, S. Grogan, S. Bambot, A. Agrawal, and M. Faupel, Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia,Journal of Lower Genital Tract Disease5(2):65–72, 2001.

    Article  Google Scholar 

  6. S.G. Kong, Y.R. Chen, I. Kim, and M.S. Kim, Analysis of hyperspectral fluorescence images for poultry skin tumor inspection,Applied Optics43(4):824–833, 2004.

    Article  Google Scholar 

  7. I. Kim, M.S. Kim, Y.R. Chen, and S.G. Kong, Detection of skin tumors on chicken carcasses using hyperspectral fluorescence imaging,Transactions of the American Society of Agricultural Engineers47(5):1785–1792, 2004.

    Google Scholar 

  8. V. Vapnik,Statistical Learning Theory. Wiley, New York, 1998.

    MATH  Google Scholar 

  9. N. Cristianini and J. Shawe-Taylor,An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, New York, 2000.

    Google Scholar 

  10. T. Vo-Dinh, D.L. Stokes, M. Wabuyele, M.E. Martin, J.M. Song, R. Jagannathan, E. Michaud, R.J. Lee, and X. Pan, Hyperspectral imaging system for in vivo optical diagnostics,IEEE Engineering in Medicine and Biology23:40–59, 2004.

    Article  Google Scholar 

  11. S.G. Kong, Z. Du, M. Martin, and T. Vo-Dinh, Hyperspectral fluorescence image analysis for use in medical analysis,Proceedings of the SPIE Conference on Biomedical Optics, San Jose, January 2005.

    Google Scholar 

  12. F. Moreau, S.M. Moreau, D.M. Hueber, and T. Vo-Dinh, Fiber-optic remote multisensor system based on an acousto-optic tunable filter (AOTF),Applied Spectroscopy50:1295, 1996.

    Article  Google Scholar 

  13. I.-C. Chang, Electronically tuned imaging spectrometer using acousto-optic tunable filter,Proceedings of the SPIE International Society for Optical Engineering1703:24, 1992.

    Google Scholar 

  14. S.G. Kong, M. Martin, and T. Vo-Dinh, Hyperspectral fluorescence imaging for mouse skin tumor detectionETRI Journal28(6):770–776, 2006.

    Google Scholar 

  15. B. Albers, J. DiBenedetto, S. Lutz, and C. Purdy, More efficient environmental monitoring with laser-induced fluorescence imaging,Biophotonics International Magazine2(6):42–54, 1995.

    Google Scholar 

  16. R.H. Yuhas, A.F.H. Goetz, and J.W. Boardman, Discrimination among semiarid landscape endmembers using the spectral angle mapper (SAM) algorithm,Third Annual JPL Airborne Geoscience Workshop, JPL Publication 92–14 1:147–149, 1992.

    Google Scholar 

  17. R.N. Clark, G.A. Swayze, A. Gallagher, N. Gorelick, and F.A. Kruse, Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials,Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication 91–28, pp. 2–3, 1991.

    Google Scholar 

  18. F. Roli and G. Fumera, Support vector machines for remote-sensing image classification,Proceedings of SPIE4170: 160–166, 2001.

    Article  Google Scholar 

  19. F. Melangi, and L. Bruzzone, Classification of hyperspectral remote sensing images with support vector machines,IEEE Transactions on Geoscience and Remote Sensing42(8):1778– 1790, 2004.

    Article  Google Scholar 

  20. S. Abe,Support Vector Machines for Pattern Classification. Springer-Verlag, New York, 2005.

    Google Scholar 

  21. Z. Du, M.K. Jeong, and S.G. Kong, Band selection of hyperspectral images for automatic detection of poultry skin tumors,IEEE Transactions on Automation Science and Engineering4(3):332–339, 2007.

    Article  Google Scholar 

  22. C. Chang, Q. Du, T. Sun, and M. Althouse, A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification,IEEE Transactions on Geo-science and Remote Sensing37(6):2631–2641, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kong, S.G., Park, LJ. (2009). Hyperspectral Image Analysis for Skin Tumor Detection. In: Hammoud, R.I. (eds) Augmented Vision Perception in Infrared. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84800-277-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-277-7_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-276-0

  • Online ISBN: 978-1-84800-277-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics