Skip to main content

Low Latency in Wireless Mesh Networks

  • Chapter
Guide to Wireless Mesh Networks

Part of the book series: Computer Communications and Networks ((CCN))

  • 1482 Accesses

Abstract

Multimedia requirements of the 1990s drove wired and optical network architects to examine how to combine the advantages of packet switching with the long proven methods of circuit-switching to implement traffic engineering to reduce variance in end-to-end delay. Methods, such as asynchronous transfer mode (ATM) and multiprotocol label switching (MPLS), have been used to create virtual circuits. Because both are mature and proven technologies for wired and optical network architectures, much research has been done to apply these methods to wireless mesh networks (WMNs). But as these are applied, optimal performance improvement eludes WMN designers because of the inherent shortcomings of contention-based WMNs and the differences between the wired/optical and wireless environments in the provision of noninterfering unidirectional internodal links. This chapter will present issues regarding the development of such low-latency WMNs to include multiple orthogonal channels, virtual cut-through and wormhole switching, physical layer circuit switch design, and reservation protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Li, C. Blake, D. De Couto, H. Lee, and R. Morris, Capacity of Ad Hoc Wireless Networks. Mobile Computing and Networking. 61–69 (2001).

    Google Scholar 

  2. R. Ramanathan, Challenges: A Radically New Architecture for Next Generation Mobile Ad Hoc Networks. MobiCom 05: Proceedings of the 11th Annual International Conference on Mobile Computing and Networking. 132–139 (2005).

    Google Scholar 

  3. R. Jain, Internet 3.0: Ten Problems with Current Internet Architecture and Solutions for the Next Generation. MILCOM 2006: Proceedings of the IEEE Military Communications Conference. 1–9 (2006).

    Google Scholar 

  4. R. McTasney, D. Grunwald, and D. Sicker, Low-Latency Multichannel Wireless Mesh Networks. Proceedings of the 16th International Conference on Computer Communications and Networks 2007 ICCCN 2007. 1082–1087 (2007).

    Google Scholar 

  5. M. Buettner and D. Grunwald, Technical Report CU-CS-1011-06: A Wireless Flit-Based OpNET Model. Department of Computer Science University of Colorado at Boulder (2006).

    Google Scholar 

  6. R. Ramanthan and F. Tchakountio, Ultra Low Latency MANETS BBN Technical Memorandum No. TM-2023. BBN, Cambridge, Massachuessettes (2006).

    Google Scholar 

  7. C. Nguyen, Vibrating RF MEMS for Next Generation Wireless Applications. Proceedings of the IEEE 2004 Custom Integrated Circuits Conference. 257–264 (2004).

    Google Scholar 

  8. Gast, M. (2005).802.11 Wireless Networks: The Definitive Guide. O'Reilly Media, Sebastabpool, California

    Google Scholar 

  9. Kermani P. Kleinrock, L. (1979).Virtual Cut-Through: A New Computer Communication Switching Technique. Computer Networks 3(4), 267–286,

    MATH  MathSciNet  Google Scholar 

  10. Leon-Garcia A. Widjaja, I. (2000).Communications Networks: Fundamental Concept and Key Architectures. McGraw-Hill, Boston, MA,

    Google Scholar 

  11. Davie B. Rekhter, Y. (2000).MPLS: Technology and Applications. Morgan Kaufman, New York

    Google Scholar 

  12. Minei I. Lucek, J. (2006).MPLS-Enabled Applications: Emerging Developments and New Technologies. Wiley, West Sussex

    Google Scholar 

  13. Perkins, C. (2001).Ad Hoc Networks, Addison-Wesley, New York

    Google Scholar 

  14. V. Park, The Temporally-Ordered Routing Algorithm (TORA). http://www3.ietf.org/proceedings/97dec/slides/manet-tora/index.htm (1999). Accessed 5 March 2007.

  15. J. Garcia-Luna-Aceves, M. Spohn, and D. Beyer, IETF MANET Working Group Draft – Source Tree Adaptive Routing (STAR) Protocol. http://tools.ietf.org/html/draft-ietf-manet-star-00 (1998). Accessed 3 March 2007.

  16. P. Jacquet, P. Mulethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot, Optimized link state routing protocol for ad hoc networks. Proceedings of the 5th IEEE Multi Topic Conference. 1–7 (2001).

    Google Scholar 

  17. Thomas, S. (2002).IP Switching and Routing Essentials: Understanding RIP, OSPF, BGP, MPLS, CR-LDP, and RSVP-TE. Wiley, New York

    Google Scholar 

  18. A. Greenberg, IP Network Traffic Engineering. http://www.nanog.org/mtg-0002/ppt/green/index.htm (2000). Accessed 24 January 2007.

  19. S. Ramanathan and E. Lloyd, Scheduling Algorithms for Multihop Radio Networks. IEEE/ACM Transactions on Networking. 166–177 (1993).

    Google Scholar 

  20. A. Raniwala, K. Gopalan, and T. Chiueh, Centralized Channel Assignment and Routing Algorithms for Multi-channel Wireless Mesh Networks. SIGMOBILE Mobile Computing and Communications Review. 50–65 (2004).

    Google Scholar 

  21. A. Raniwala and T. Chiueh, Evaluation of a Wireless Enterprise Backbone Network Architecture. Proceedings of the 12th Annual IEEE Symposium on High Performance Interconnects 2004. 98–104 (2004).

    Google Scholar 

  22. X. Ma and E. Lloyd, Evaluation of a Distributed Broadcast Scheduling Protocol for Multihop Radio Networks. IEEE Military Communications Conference 2001 Communications for Network-Centric Operations. 998–1002 (2001).

    Google Scholar 

  23. G. Kulkarni, V. Raghunathan, M. Srivastava, and M. Gerla, Channel Allocation in OFDMA-based Wireless Ad-Hoc Networks. Advanced Signal Processing Algorithms, Architectures, and Implementations XII. (2002) doi:10.1117/12.453813.

    Google Scholar 

  24. P. Mohopatra, J. Li, and C. Gui, QoS in Mobile Ad Hoc Networks. IEEE Wireless Communications. 44–52 (2003).

    Google Scholar 

  25. E. Valeroso and M. Alam, Adaptive Resource Scheduling Strategies and Performance Analysis of Broadband Networks. LCN'96: Proceedings of the 21st Annual IEEEE Conference on Local Computer Networks. 305 (1996).

    Google Scholar 

  26. F. Faucher, T. Nadeau, A. Chieu, W. Townsend, D. Skalecki, and M. Tatham, IETF Internet Draft: Requirements for Support of Diff-Serv-aware MPLS Traffic Engineering (2000).

    Google Scholar 

  27. J. Evans, K. Shanmugan, G. Minden, V. Frost, and G. Prescott, Rapidly Deployable Radio Network (RDRN) – Phase II Final Report ITTC-FY2003-1380-15 (2002).

    Google Scholar 

  28. H. Xiao, W. Seah, A. Lo, and K. Chua, A Flexible Quality of Service Model for Mobile Ad-Hoc Networks. 2000 IEEE 51st Vechicular Technology Conference Proceedings 445–449 (2000). doi:10.1109/VETECS.2000.851496

    Google Scholar 

  29. H. Yan and H. Abdel-Wahab, HQMM: A Hybrid QoS Model for Mobile Ad-Hoc Networks. 11th IEEE Symposium on Computers and Communications 2006 194–200 (2006). doi:10.1109/ISCC.2006.85

    Google Scholar 

  30. S. Lee and A. Campbell, INSIGNIA: In-Band Signaling Support for QoS in Mobile Ad Hoc Networks. Proceedings of the 5th International Workshop on Mobile Multimedia Communication (1998).

    Google Scholar 

  31. A. Taha, H. Hassanein, and H. Mouftah, Integrated Solutions for Wireless MPLS and Mobile IP: Current Status and Future Directions. Canadian Conference on Electrical and Computer Engineering 1463–1466 (2004).

    Google Scholar 

  32. S. Vijayarangam and S. Ganesan, QoS Implementation for MPLS Based Wirelss Networks. ASEE Conference 02 1–9 (2002).

    Google Scholar 

  33. R. Sanchez, J. Evans, G. Minden, V. Frost, and K. Shanmugan, RDRN: A Rapidly Deployable Network – Implementation and Experience. International Conference on Universal Personal Communications 1998 93–97 (1998).

    Google Scholar 

  34. F. Liu, Z. Zeng, J. Tao, Q. Li, and Z. Lin, Achieving QoS for IEEE 802.16 in Mesh Mode. http://zlin.ba.ttu.edu/pdf/CSI-79.pdf (2005) Accessed 5 March (2007).

  35. M. Cao, W. Ma, Q. Zhang, X. Wang, and W. Zhu, Modeling and Performance Analysis of the Distributed Scheduler in IEEE 802.16 Mesh Mode. MobiHoc ‘05: Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing (2005). doi:10.1145/1062689.1062701

    Google Scholar 

  36. R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, RFC 2205 – Resource ReSerVation Protocol (RSVP) – Version 1 Functional Specification (1997).

    Google Scholar 

  37. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weisss, RFC 2475 – An Architecture for Differentiated Services (1998).

    Google Scholar 

  38. I. Chlamtac, M. Conti, and J. Liu, Mobile Ad Hoc Networks: Imperatives and Challenges. Ad Hoc Networks 13–64 (2003).

    Google Scholar 

  39. S. Radhakrishnan, V. Frost, and J. Evans, Quality of Service for Rapidly Deployable Radio Networks. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences 2000 11 (2000).

    Google Scholar 

  40. J. Xue, P. Stuedi, and G. Alonso, ASAP: An Adaptive QoS Protocol for Mobile and Ad Hoc Networks. IEEE Proceedings on Personal, Indoor and Mobile Radio Communications 2616–2620 (2003).

    Google Scholar 

  41. E. Carlson, C. Prehofer, C. Bettstetter, H. Karl, and A. Wolisz, A Distributed End-to-End Reservation Protocol for IEEE 802.11-based Wireless Mesh Networks. IEEE Journal on Selected Areas in Communications 1–10 (2006).

    Google Scholar 

  42. H. Liu and D. Raychaudhuri, Label Switched Multi-path Forwarding in Wireless Ad-Hoc Networks. PerCom Workshops 248–252 (2005). doi:10.1109/PERCOMW.2005.42

    Google Scholar 

  43. R. Nagarajan and E. Ekici, Flexible MPLS Signaling (FMS) for Mobile Networks. CC 2004 – IEEE International Conference on Communications 4321–4325 (2004).

    Google Scholar 

  44. Y. Chi-Hsiang, H. Mouftah, and H. Hassanein, Signaling and QoS Guarantees in Mobile Ad Hoc Networks. IEEE International Conference on Communications 3284–3290 (2002).

    Google Scholar 

  45. S. Bush, S. Jagannath, R. Sanchez, J. Evans, V. Frost, and S. Shanmugan, Rapidly Deployable Radio Networks Network Architecture (1997).

    Google Scholar 

  46. S. Bush, S. Jagannath, R. Sanchez, J. Evans, G. Minden, S. Shanmugan, and V. Frost, Wireless Networks (1997). http://dx.doi.org/10.1023/A:1019117603571 .

  47. A. Acharya, A. Misra, and S. Bansal, A Label-Switching Packet Forwarding Architecture for Multi-hop Wireless LANs. Proceedings of the 5th ACM International Workshop on Wireless Mobile Multimedia 33–40 (2002).

    Google Scholar 

  48. A. Acharya, A. Misra, and S. Bansal, High-Performance Architectures for IP-Based Multihop 802.11 Networks. IEEE Wireless Communications 22–28 (2003).

    Google Scholar 

  49. V. Untz, M. Heusse, F. Rousseau, and A. Duda, Lilith: An Interconnection Architecture Based on Label Switching for Spontaneous Edge Networks. International Conference on Mobile and Ubiquitous Systems 146–151 (2004).

    Google Scholar 

  50. V. Untz, M. Heusse, F. Rousseau, A. Duda, On Demand Label Switching for Spontaneous Edge Networks. FDNA ‘04: Proceedings of the ACM SIGCOMM Workshop on Future Directions in Network Architecture 35–42 (2004).

    Google Scholar 

  51. W. Dally, Performance Analysis of k-Ary n-Cube Interconnection Networks. IEEE Transactions on Computers 775–785 (1990).

    Google Scholar 

  52. W. Dally, Virtual-Channel Flow Control. IEEE Transactions on Parallel Distributed Systems 194–205 (1992).

    Google Scholar 

  53. L. Peh and W. Dally, Flit-Reservation Flow Control, International Symposium on High-Performance Computer Architecture 73–84 (2000).

    Google Scholar 

  54. F. De Greve, F. De Turck, I. Moerman, and P. Demeester, Design of Wireless Mesh Networks for Aggregating Traffic of Fast Moving Users. MobiWac ‘06: Proceedings of the International Workshop on Mobility Management and Wireless Access 35–44 (2006).

    Google Scholar 

  55. Greve, F. Lannoo, B. Peters, L. Leeuwen, T. Quickenborne, F. Colle, D. Turck, F. Moerman, I. Pickavet, M. Dhoedt, B. Demeester, P. (2005).FAMOUS: A Network Architecture for Delivering Multimedia Services to FAst MOving USers. Wireless Personal Communications 281–304 Kluwer Academic, Hingham, MA

    Google Scholar 

  56. D. Grunwald, D. Sicker, T. Brown, and P. Mathys, NSF NeTS-FIND Proposal: Radio Wormholes for Wireless Label Switched Mesh Networks. Department of Computer Science and Department of Electrical and Computer Engineering at the University of Colorado at Boulder (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert McTasney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

McTasney, R., Grunwald, D., Sicker, D. (2009). Low Latency in Wireless Mesh Networks. In: Misra, S., Misra, S.C., Woungang, I. (eds) Guide to Wireless Mesh Networks. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-84800-909-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-909-7_15

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-908-0

  • Online ISBN: 978-1-84800-909-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics