Skip to main content

Multi-View Matching Tensors from Lines for General Camera Models

  • Chapter
Tensors in Image Processing and Computer Vision

Part of the book series: Advances in Pattern Recognition ((ACVPR))

  • 2763 Accesses

Abstract

General camera models relax the constraint on central projection and characterize cameras as mappings between each pixel and the corresponding projection rays. This allows to describe most cameras types, including classical pinhole cameras, cameras with various optical distortions, catadioptric cameras and other acquisition devices. We deal with the structure from motion problem for such general models. We first consider an hierarchy of general cameras first introduced in [28] where the cameras are described according to the number of points and lines that have a non-empty intersection with all the projection rays. Then we propose a study of the multi-view geometry of such cameras and a new formulation of multi-view matching tensors working for projection rays crossing the same 3D line, the counterpart of the fundamental matrices and the multifocal tensors of the standard perspective cameras. We also delineate a method to estimate such tensors and recover the motion between the views.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, S., Nayar, S.K.: A theory of single-viewpoint catadioptric image formation. International Journal of Computer Vision 35(2), 175–196 (1999). DOI 10.1023/A:1008128724364

    Article  Google Scholar 

  2. Bakstein, H., Pajdla, T.: An overview of non-central cameras. In B. Likar, Editor, Proceedings of the Computer Vision Winter Workshop, Ljubljana, Slovenia, February 2001, pp. 223–233.

    Google Scholar 

  3. Barreto, J., Araujo, H.: Paracatadioptric camera calibration using lines. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV ’03), vol. 2, pp. 1359–1365. IEEE Computer Society, Los Alamitos, CA, USA (2003). DOI 10.1109/ICCV.2003.1238648

    Google Scholar 

  4. Bouguet, J.Y.: Camera calibration toolbox for matlab. http://www.vision.caltech.edu/bouguetj

  5. Bronnimann, H., Everett, H., Lazard, S., Sottile, F., Whitesides, S.: Transversals to line segments in three-dimensional space. Discrete Compututational Geometry 34(3), 381–390 (2005). DOI http://dx.doi.org/10.1007/s00454-005-1183-1

    Article  MathSciNet  Google Scholar 

  6. Caglioti, V., Gasparini, S.: On the localization of straight lines in 3D space from single 2D images. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR ’05), vol. 1, pp. 1129–1134. IEEE Computer Society, Los Alamitos, CA, USA (2005). DOI 10.1109/CVPR.2005.257

    Google Scholar 

  7. Caglioti, V., Gasparini, S.: “How many planar viewing surfaces are there in noncentral catadioptric cameras?” Towards singe-image localization of space lines. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR ’06), vol. 1, pp. 1266–1273. IEEE Computer Society, Los Alamitos, CA, USA (2006). DOI 10.1109/CVPR.2006.1

    Google Scholar 

  8. Faugeras, O., Mourrain, B.: On the geometry and algebra of the point and line correspondences between n images. In: CVPR95, pp. 951–956 (1995). DOI 10.1109/ICCV.1995.466832

    Google Scholar 

  9. Feldman, D., Pajdla, T., Weinshall, D.: On the epipolar geometry of the crossed-slits projection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV ’03), vol. 2, pp. 988–995. IEEE Computer Society, Washington, DC, USA (2003). DOI 10.1109/ICCV.2003.1238456

    Google Scholar 

  10. Fermuller, C., Aloimonos, Y., Baker, P., Pless, R., Neumann, J., Stuart, B.: Multi-camera networks: eyes from eyes. In: Proceedings of the 1st Workshop on Omnidirectional Vision (OMNIVIS 2000), Hilton Head, S.C., USA, 2000, pp. 11–18. DOI 10.1109/OMNVIS.2000.853797

    Google Scholar 

  11. Firoozfam, P., Negahdaripour, S.: Multi-camera conical imaging; calibration and robust 3D motion estimation for ROV based mapping and positioning. In: Proceedings of OCEANS MTS/IEEE Conference and Exhibition, vol. 3, pp. 1595–1602 (2002). DOI 10.1109/OCEANS.2002.1191873

    Google Scholar 

  12. Geyer, C., Daniilidis, K.: Paracatadioptric camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 687–695 (2002). DOI 10.1109/34.1000241

    Article  Google Scholar 

  13. Geyer, C., Daniilidis, K.: Mirrors in motion: epipolar geometry and motion estimation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV ’03), pp. 766–773. IEEE Computer Society, Los Alamitos, CA, USA (2003). DOI 10.1109/ICCV.2003.1238426

    Google Scholar 

  14. Grossberg, M., Nayar, S.: A general imaging model and a method for finding its parameters. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV ’01), pp. 108–115. IEEE Computer Society, Los Alamitos, CA, USA (2001)

    Google Scholar 

  15. Gupta, R., Hartley, R.I.: Linear pushbroom cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(9), 963–975 (1997). DOI 10.1109/34.615446

    Article  Google Scholar 

  16. Hartley, R.I.: Lines and points in three views and the trifocal tensor. International Journal of Computer Vision 22(2), 125–140 (1997). DOI http://dx.doi.org/10.1023/A:1007936012022

    Article  Google Scholar 

  17. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, second edn. Cambridge University Press (2004)

    MATH  Google Scholar 

  18. Hicks, R., Bajcsy, R.: Catadioptric sensors that approximate wide-angle perspective projections. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR ’00), vol. 1, pp. 545–551. IEEE Computer Society, Los Alamitos, CA, USA (2000). DOI 10.1109/CVPR.2000.855867

    Google Scholar 

  19. Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination. Chelsea Publishing Co., New York: Chelsea (1932)

    Google Scholar 

  20. Ishiguro, H., Yamamoto, M., Tsuji, S.: Omni-directional stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 257–262 (1992). DOI 10.1109/34.121792

    Article  Google Scholar 

  21. Lanman, D., Wachs, M., Taubin, G., Cukierman, F.: Reconstructing a 3D line from a single catadioptric image. In: Proceedings of the International Symposium on 3D Data Processing, Visualization and Transmission, pp. 89–96 (2006). DOI 10.1109/3DPVT.2006.115

    Google Scholar 

  22. Micusik, B., Pajdla, T.: Autocalibration & 3D reconstruction with non-central catadioptric cameras. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR ’04), vol. 1, pp. 58–65. IEEE Computer Society, Los Alamitos, CA, USA (2004). DOI 10.1109/CVPR.2004.1315014

    Chapter  Google Scholar 

  23. Peleg, S., Ben-Ezra, M.: Stereo panorama with a single camera. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR ’99), vol. 1. IEEE Computer Society, Los Alamitos, CA, USA (1999). DOI 10.1109/CVPR.1999.786969

    Google Scholar 

  24. Pless, R.: Using many cameras as one. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR ’03), vol. 2, pp. 587–93, Madison, WI, USA, 2003. DOI 10.1109/CVPR.2003.1211520

    Google Scholar 

  25. Scaramuzza, D., Martinelli, A., Siegwart, R.: A toolbox for easily calibrating omnidirectional cameras. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5695–5701, Beijing, China, 2006. DOI 10.1109/IROS.2006.282372

    Chapter  Google Scholar 

  26. Shum, H.Y., Kalai, A., Seitz, S.: Omnivergent stereo. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV ’99), vol. 1, pp. 22–29. IEEE Computer Society, Los Alamitos, CA, USA (1999). DOI 10.1109/ICCV.1999.791193

    Google Scholar 

  27. Sturm, P.: Mixing catadioptric and perspective cameras. In: Proceedings of the 3rd Workshop on Omnidirectional Vision (OMNIVIS 2002), pp. 37–44. IEEE Computer Society, Los Alamitos, CA, USA (2002). DOI 10.1109/OMNVIS.2002.1044489

    Chapter  Google Scholar 

  28. Sturm, P.: Multi-view geometry for general camera models. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR ’05), vol. 1, pp. 206–212. IEEE Computer Society, Los Alamitos, CA, USA (2005). DOI 10.1109/CVPR.2005.237

    Chapter  Google Scholar 

  29. Svoboda, T., Pajdla, T.: Epipolar geometry for central catadioptric cameras. International Journal of Computer Vision 49(1), 23–37 (2002). DOI 10.1023/A:1019869530073

    Article  MATH  Google Scholar 

  30. Swaminathan, R., Nayar, S.: Nonmetric calibration of wide-angle lenses and polycameras. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1172–1178 (2000)

    Article  Google Scholar 

  31. Teller, S., Hohmeyer, M.: Determining the lines through four lines. Journal of Graphics Tools 4(3), 11–22 (1999)

    Google Scholar 

  32. Thirthala, S., Pollefeys, M.: Multi-view geometry of 1D radial cameras and its application to omnidirectional camera calibration. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV ’05), vol. 2, pp. 1539–1546, Beijing, China, 2005. DOI 10.1109/ICCV.2005.158

    Chapter  Google Scholar 

  33. Weng, J., Huang, T., Ahuja, N.: Motion and structure from line correspondences: Closed-form solution, uniqueness, and optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(3), 318–336 (1992). DOI 10.1109/34.120327

    Article  Google Scholar 

  34. Zomet, A., Feldman, D., Peleg, S., Weinshall, D.: Mosaicing new views: The crossed-slits projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(6), 741–754 (2003). DOI 10.1109/TPAMI.2003.1201823

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Gasparini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gasparini, S., Sturm, P. (2009). Multi-View Matching Tensors from Lines for General Camera Models. In: Aja-Fernández, S., de Luis García, R., Tao, D., Li, X. (eds) Tensors in Image Processing and Computer Vision. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84882-299-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-299-3_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-298-6

  • Online ISBN: 978-1-84882-299-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics