Skip to main content

Dyssynchrony Evaluation: MRI and CCT

  • Chapter
  • First Online:
Cardiac Imaging in Electrophysiology

Abstract

Cardiac resynchronization therapy (CRT) has been shown to improve outcomes in clinical trials for appropriate selected patients with heart failure; however, there is still a significant nonresponse rate when the electrocardiographic QRS duration is used to identify mechanical dyssynchrony. From a physiological standpoint, the appropriate cardiac substrate for CRT is most appropriately identified by assessment of mechanical dyssynchrony and myocardial scar burden, but QRS duration has poor sensitivity and specificity in this regard. For this reason, cardiac imaging has been evaluated in order to improve CRT candidate selection, but results using echocardiography have been disappointing. In contrast, clinical studies show great promise for CMR in this regard. As the gold standard for assessment of cardiac scar and strain, cardiac magnetic resonance (CMR) offers clear advantages over other imaging modalities for assessment of the cardiac substrate for resynchronization. In particular, CMR is regarded as the best imaging modality for assessment of circumferential strain, which corresponds to the primary orientation of cardiac myofibers. This chapter reviews important principles of CMR dyssynchrony and scar imaging, then discusses in detail clinical and technical aspects of myocardial tissue tagging, displacement encoding with stimulated echoes (DENSE), strain-encoded MR (SENC), velocity-encoded MR, and contour tracking methods. The role of CMR in patients with pacemakers and defibrillators is also discussed. The potential role of cardiac CT (CCT) for dyssynchrony evaluation is also discussed. Cardiac CT provides excellent assessment of coronary venous anatomy, while methods for assessment of dyssynchrony and scar based on CCT are being developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL, Weston SA, Redfield MM, et al. Trends in heart failure incidence and survival in a community-based population. JAMA. 2004;292(3):344-350.

    Article  PubMed  CAS  Google Scholar 

  2. Levy D, Kenchaiah S, Larson MG, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. 2002;347(18):1397-1402.

    Article  PubMed  Google Scholar 

  3. Haldeman GA, Croft JB, Giles WH, Rashidee A. Hospitalization of patients with heart failure: National Hospital Discharge Survey, 1985 to 1995. Am Heart J. 1999;137(2):352-360.

    Article  PubMed  CAS  Google Scholar 

  4. Ho KK, Pinsky JL, Kannel WB, Levy D. The epidemiology of heart failure: the Framingham study. J Am Coll Cardiol. 1993;22(4 Suppl A):6A-13A.

    Article  PubMed  CAS  Google Scholar 

  5. Shamim W, Francis DP, Yousufuddin M, et al. Intraventricular conduction delay: a prognostic marker in chronic heart failure. Int J Cardiol. 1999;70(2):171-178.

    Article  PubMed  CAS  Google Scholar 

  6. Baldasseroni S, Opasich C, Gorini M, et al. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am Heart J. 2002;143(3):398-405.

    Article  PubMed  Google Scholar 

  7. Bilchick KC, Helm RH, Kass DA. Physiology of biventricular pacing. Curr Cardiol Rep. 2007;9(5):358-365.

    Article  PubMed  Google Scholar 

  8. Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346(24):1845-1853.

    Article  PubMed  Google Scholar 

  9. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350(21):2140-2150.

    Article  PubMed  CAS  Google Scholar 

  10. Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352(15):1539-1549.

    Article  PubMed  CAS  Google Scholar 

  11. Epstein AE, DiMarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: executive summary a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;51(21):2085-2105.

    Article  Google Scholar 

  12. Chung ES, Leon AR, Tavazzi L, et al. Results of the predictors of response to CRT (PROSPECT) trial. Circulation. 2008;117(20):2608-2616.

    Article  PubMed  Google Scholar 

  13. Beshai JF, Grimm RA, Nagueh SF, et al. Cardiac-resynchronization therapy in heart failure with narrow QRS complexes. N Engl J Med. 2007;357(24):2461-2471.

    Article  PubMed  CAS  Google Scholar 

  14. Bordachar P, Lafitte S, Reuter S, et al. Echocardiographic parameters of ventricular dyssynchrony validation in patients with heart failure using sequential biventricular pacing. J Am Coll Cardiol. 2004;44(11):2157-2165.

    Article  PubMed  Google Scholar 

  15. Curry CW, Nelson GS, Wyman BT, et al. Mechanical dyssynchrony in dilated cardiomyopathy with intraventricular conduction delay as depicted by 3D tagged magnetic resonance imaging. Circulation. 2000;101(1):E2.

    PubMed  CAS  Google Scholar 

  16. Helm PA, Younes L, Beg MF, et al. Evidence of structural remodeling in the dyssynchronous failing heart. Circ Res. 2006;98(1):125-132.

    Article  PubMed  CAS  Google Scholar 

  17. Helm RH, Leclercq C, Faris OP, et al. Cardiac dyssynchrony analysis using circumferential versus longitudinal strain: implications for assessing cardiac resynchronization. Circulation. 2005;111(21):2760-2767.

    Article  PubMed  Google Scholar 

  18. Bilchick KC, Dimaano V, Wu KC, et al. Cardiac magnetic resonance assessment of dyssynchrony and myocardial scar predicts function class improvement following cardiac resynchronization therapy. JACC Cardiovasc Imaging. 2008;1(5):561-568.

    Article  PubMed  Google Scholar 

  19. Delgado V, Ypenburg C, Van Bommel RJ, et al. Assessment of left ventricular dyssynchrony by speckle tracking strain imaging comparison between longitudinal, circumferential, and radial strain in cardiac resynchronization therapy. J Am Coll Cardiol. 2008;51(20):1944-1952.

    Article  PubMed  Google Scholar 

  20. Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol. 2003;13(11):2409-2418.

    Article  PubMed  Google Scholar 

  21. Shuman WP, Branch KR, May JM, et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology. 2008;248(2):431-437.

    Article  PubMed  Google Scholar 

  22. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: tagging with MR imaging – a method for noninvasive assessment of myocardial motion. Radiology. 1988;169(1):59-63.

    PubMed  CAS  Google Scholar 

  23. McVeigh ER, Atalar E. Cardiac tagging with breath-hold cine MRI. Magn Reson Med. 1992;28(2):318-327.

    Article  PubMed  CAS  Google Scholar 

  24. Zwanenburg JJ, Kuijer JP, Marcus JT, Heethaar RM. Steady-state free precession with myocardial tagging: CSPAMM in a single breathhold. Magn Reson Med. 2003;49(4):722-730.

    Article  PubMed  Google Scholar 

  25. Herzka DA, Guttman MA, McVeigh ER. Myocardial tagging with SSFP. Magn Reson Med. 2003;49(2):329-340.

    Article  PubMed  Google Scholar 

  26. Young AA, Imai H, Chang CN, Axel L. Two-dimensional left ­ventricular deformation during systole using magnetic resonance imaging with spatial modulation of magnetization [erratum appears in Circulation 1994 Sep;90(3):1584]. Circulation. 1994;89(2):740-752.

    PubMed  CAS  Google Scholar 

  27. McVeigh ER. MRI of myocardial function: motion tracking techniques. Magn Reson Imaging. 1996;14(2):137-150.

    Article  PubMed  CAS  Google Scholar 

  28. Osman NF, Kerwin WS, McVeigh ER, Prince JL. Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med. 1999;42(6):1048-1060.

    Article  PubMed  CAS  Google Scholar 

  29. Bundy JM, Lorenz CH. TAGASIST: a post-processing and analysis tools package for tagged magnetic resonance imaging. Comput Med Imaging Graph. 1997;21(4):225-232.

    Article  PubMed  CAS  Google Scholar 

  30. Garot J, Bluemke DA, Osman NF, et al. Fast determination of regional myocardial strain fields from tagged cardiac images using harmonic phase MRI. Circulation. 2000;101(9):981-988.

    PubMed  CAS  Google Scholar 

  31. Leclercq C, Faris O, Tunin R, et al. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block. Circulation. 2002;106(14):1760-1763.

    Article  PubMed  Google Scholar 

  32. Helm RH, Byrne M, Helm PA, et al. Three-dimensional mapping of optimal left ventricular pacing site for cardiac resynchronization. Circulation. 2007;115(8):953-961.

    Article  PubMed  Google Scholar 

  33. Pan L, Stuber M, Kraitchman DL, Fritzges DL, Gilson WD, Osman NF. Real-time imaging of regional myocardial function using fast-SENC. Magn Reson Med. 2006;55(2):386-395.

    Article  PubMed  Google Scholar 

  34. Osman NF, Sampath S, Atalar E, Prince JL. Imaging longitudinal cardiac strain on short-axis images using strain-encoded MRI. Magn Reson Med. 2001;46(2):324-334.

    Article  PubMed  CAS  Google Scholar 

  35. Korosoglou G, Youssef AA, Ibrahim EH, Bilchick KC, Lardo AC, Osman NF. Real-time fast strain-encoded magnetic resonance imaging to evaluate regional myocardial function at 3.0 Tesla: ­comparison to conventional tagging. J Magn Reson Imaging. 2008;27(5):1012-1018.

    Article  PubMed  Google Scholar 

  36. Neizel M, Lossnitzer D, Korosoglou G, et al. Strain-encoded (SENC) magnetic resonance imaging to evaluate regional heterogeneity of myocardial strain in healthy volunteers: comparison with conventional tagging. J Magn Reson Imaging. 2009;29(1):99-105.

    Article  PubMed  Google Scholar 

  37. Pelc NJ, Drangova M, Pelc LR, et al. Tracking of cyclic motion with phase-contrast cine MR velocity data. J Magn Reson Imaging. 1995;5(3):339-345.

    Article  PubMed  CAS  Google Scholar 

  38. Zhu Y, Drangova M, Pelc NJ. Estimation of deformation gradient and strain from cine-PC velocity data. IEEE Trans Med Imaging. 1997;16(6):840-851.

    Article  PubMed  CAS  Google Scholar 

  39. Constable RT, Rath KM, Sinusas AJ, Gore JC. Development and evaluation of tracking algorithms for cardiac wall motion analysis using phase velocity MR imaging. Magn Reson Med. 1994;32(1):33-42.

    Article  PubMed  CAS  Google Scholar 

  40. Lingamneni A, Hardy PA, Powell KA, Pelc NJ, White RD. Validation of cine phase-contrast MR imaging for motion analysis. J Magn Reson Imaging. 1995;5(3):331-338.

    Article  PubMed  CAS  Google Scholar 

  41. Delfino JG, Bhasin M, Cole R, et al. Comparison of myocardial velocities obtained with magnetic resonance phase velocity mapping and tissue Doppler imaging in normal subjects and patients with left ventricular dyssynchrony. J Magn Reson Imaging. 2006;24(2):304-311.

    Article  PubMed  Google Scholar 

  42. Marsan NA, Westenberg JJ, Tops LF, et al. Comparison between tissue Doppler imaging and velocity-encoded magnetic resonance imaging for measurement of myocardial velocities, assessment of left ventricular dyssynchrony, and estimation of left ventricular filling pressures in patients with ischemic cardiomyopathy. Am J Cardiol. 2008;102(10):1366-1372.

    Article  PubMed  Google Scholar 

  43. Westenberg JJ, Lamb HJ, van der Geest RJ, et al. Assessment of left ventricular dyssynchrony in patients with conduction delay and idiopathic dilated cardiomyopathy: head-to-head comparison between tissue Doppler imaging and velocity-encoded magnetic resonance imaging. J Am Coll Cardiol. 2006;47(10):2042-2048.

    Article  PubMed  Google Scholar 

  44. Muellerleile K, Baholli L, Groth M, et al. Interventricular mechanical dyssynchrony: quantification with velocity-encoded MR imaging. Radiology. 2009;253(2):364-371.

    Article  PubMed  Google Scholar 

  45. Chalil S, Stegemann B, Muhyaldeen S, et al. Intraventricular dyssynchrony predicts mortality and morbidity after cardiac resynchronization therapy: a study using cardiovascular magnetic resonance tissue synchronization imaging. J Am Coll Cardiol. 2007;50(3):243-252.

    Article  PubMed  Google Scholar 

  46. Kim D, Gilson WD, Kramer CM, Epstein FH. Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: development and initial evaluation. Radiology. 2004;230(3):862-871.

    Article  PubMed  Google Scholar 

  47. Spottiswoode BS, Zhong X, Hess AT, et al. Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting. IEEE Trans Med Imaging. 2007;26(1):15-30.

    Article  PubMed  CAS  Google Scholar 

  48. Spottiswoode BS, Zhong X, Lorenz CH, Mayosi BM, Meintjes EM, Epstein FH. Motion-guided segmentation for cine DENSE MRI. Med Image Anal. 2009;13(1):105-115. Epub 2008 Jul 9.

    Article  PubMed  Google Scholar 

  49. Zhong X, Spottiswoode BS, Meyer CH, Epstein FH. ­Two-dimensional spiral cine DENSE. Proc Intl Soc Magn Reson Med. 2007;15:756.

    Google Scholar 

  50. Zhong X, Spottiswoode BS, Cowart EA, Gilson WD, Epstein FH. Selective suppression of artifact-generating echoes in cine DENSE using through-plane dephasing. Magn Reson Med. 2006;56(5):1126-1131.

    Article  PubMed  Google Scholar 

  51. Truong QA, Hoffmann U, Singh JP. Potential uses of computed tomography for management of heart failure patients with dyssynchrony. Crit Pathw Cardiol. 2008;7(3):185-190.

    Article  PubMed  Google Scholar 

  52. Bleeker GB, Kaandorp TA, Lamb HJ, et al. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation. 2006;113(7):969-976.

    Article  PubMed  Google Scholar 

  53. Schmidt A, Azevedo CF, Cheng A, et al. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation. 2007;115(15):2006-2014.

    Article  PubMed  Google Scholar 

  54. White JA, Yee R, Yuan X, et al. Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol. 2006;48(10):1953-1960.

    Article  PubMed  Google Scholar 

  55. Nazarian S, Roguin A, Zviman MM, et al. Clinical utility and safety of a protocol for noncardiac and cardiac magnetic resonance imaging of patients with permanent pacemakers and implantable-cardioverter defibrillators at 1.5 Tesla. Circulation. 2006;114(12):1277-1284.

    Article  PubMed  Google Scholar 

  56. Faris OP, Shein M. Food and Drug Administration perspective: magnetic resonance imaging of pacemaker and implantable cardioverter-defibrillator patients. Circulation. 2006;114(12):1232-1233.

    Article  PubMed  Google Scholar 

  57. van de Veire NR, Schuijf JD, Bleeker GB, Schalij MJ, Bax JJ. Magnetic resonance imaging and computed tomography in ­assessing cardiac veins and scar tissue. Europace. 2008;10(suppl 3):iii110-iii113.

    Article  PubMed  Google Scholar 

  58. Jongbloed MR, Lamb HJ, Bax JJ, et al. Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol. 2005;45(5):749-753.

    Article  PubMed  Google Scholar 

  59. Tada H, Kurosaki K, Naito S, et al. Three-dimensional visualization of the coronary venous system using multidetector row computed tomography. Circ J. 2005;69(2):165-170.

    Article  PubMed  Google Scholar 

  60. Muhlenbruch G, Koos R, Wildberger JE, Gunther RW, Mahnken AH. Imaging of the cardiac venous system: comparison of MDCT and conventional angiography. AJR Am J Roentgenol. 2005;185(5):1252-1257.

    Article  PubMed  Google Scholar 

  61. van de Veire NR, Schuijf JD, De SJ, et al. Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol. 2006;48(9):1832-1838.

    Article  PubMed  Google Scholar 

  62. Truong QA, Singh JP, Cannon CP, et al. Quantitative analysis of intraventricular dyssynchrony using wall thickness by multidetector computed tomography. JACC Cardiovasc Imaging. 2008;1(6):772-781.

    Article  PubMed  Google Scholar 

  63. Singh JP, Houser S, Heist EK, Ruskin JN. The coronary venous anatomy: a segmental approach to aid cardiac resynchronization therapy. J Am Coll Cardiol. 2005;46(1):68-74.

    Article  PubMed  Google Scholar 

  64. Meisel E, Pfeiffer D, Engelmann L, et al. Investigation of coronary venous anatomy by retrograde venography in patients with malignant ventricular tachycardia. Circulation. 2001;104(4):442-447.

    Article  PubMed  CAS  Google Scholar 

  65. Flohr TG, Raupach R, Bruder H. Cardiac CT: how much can temporal resolution, spatial resolution, and volume coverage be improved? J Cardiovasc Comput Tomogr. 2009;3(3):143-152.

    Article  PubMed  Google Scholar 

  66. Bleeker GB, Schalij MJ, van der Wall EE, Bax JJ. Postero-lateral scar tissue resulting in non-response to cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2006;17(8):899-901.

    Article  PubMed  Google Scholar 

  67. Dickfeld T, Kocher C. The role of integrated PET-CT scar maps for guiding ventricular tachycardia ablations. Curr Cardiol Rep. 2008;10(2):149-157.

    Article  PubMed  Google Scholar 

  68. Dickfeld T, Lei P, Dilsizian V, et al. Integration of three-dimensional scar maps for ventricular tachycardia ablation with positron emission tomography-computed tomography. JACC Cardiovasc Imaging. 2008;1(1):73-82.

    Article  PubMed  Google Scholar 

  69. Tian J, Smith MF, Chinnadurai P et al. Clinical application of PET/CT fusion imaging for three-dimensional myocardial scar and left ventricular anatomy during ventricular tachycardia ablation. J Cardiovasc Electrophysiol. 2009;20(6): 597-604.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Lardo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bilchick, K., McVeigh, E., Lardo, A. (2012). Dyssynchrony Evaluation: MRI and CCT. In: Auricchio, A., Singh, J., Rademakers, F. (eds) Cardiac Imaging in Electrophysiology. Springer, London. https://doi.org/10.1007/978-1-84882-486-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-486-7_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-485-0

  • Online ISBN: 978-1-84882-486-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics