Skip to main content

Abstract

The use of shape-memory polymers in textile application is relatively new, because the stringent requirements on mechanical strength and thermal stability of fibres have been so far hard to meet. This section reviews the current state-of-the-art, focusing on the key characteristics of the polymer materials required to produce textile-grade fibres, and the techniques of filament production. An extensive review of literature on this subject is presented, with the results of our own development of shape-memory polyurethane polymers and their fibres for textile applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahir SV, Tajbakhsh AR, Terentjev EM. 2006. Self-assembled shape-memory fibres of triblock liquid-crystal polymers, Adv. Func. Mater. 16:556–560

    Article  CAS  Google Scholar 

  • Barthlott W, Neinhuis C. 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202: 1–8.

    Article  CAS  Google Scholar 

  • Cha D, Kim HY, Lee KH, Jung YC, Cho JW, Chun BC. 2005. Electrospun nonwovens of shape-memory polyurethane block copolymers. J. Appl. Polym. Sci. 96:460–465

    Article  CAS  Google Scholar 

  • Chan Villi YYF. 2007. Investigating smart textiles based on shape memory materials. Text. Res. J. 77:290–300

    Article  Google Scholar 

  • Cho JW, Jung YC, Chun BC, Chung YC. 2004. Water vapor permeability and mechanical properties of fabrics coated with shape-memory polyurethane. J. Appl. Polym. Sci. 92:2812–2816

    Article  CAS  Google Scholar 

  • Cho JW, Jung YC, Chung YC, Chun BC. 2004. Improved mechanical properties of shape-memory polyurethane block copolymers through the control of the soft-segment arrangement. J. Appl. Polym. Sci. 93: 2410–2415

    Article  CAS  Google Scholar 

  • Cho JW, Lee SH. 2004. Influence of silica on shape-memory effect and mechanical properties of polyurethane–silica hybrids. Eur. Polym. J.40:1343–1348

    Article  CAS  Google Scholar 

  • Gupta T, Adhikari B. 2003. Thermal degradation and stability of HTPB-based polyurethane and polyurethaneureas. Thermochim. Acta 402:169–181

    CAS  Google Scholar 

  • Hilton PA, Jones IA, Sallavanti R. 2000. Laser Welding of Fabrics Using Infrared Absorbing Dyes, International Conference on Joining of Advanced and Speciality Materials III, ASM 2000, 9–12 October 2000, St. Louis, Missouri, USA

    Google Scholar 

  • Hu JL. 2007. Shape-memory polymers and textile. Woodhead Publishing, Cambridge. ISBN: 978-1845690472

    Google Scholar 

  • Jeong HM, Ahn BK, Cho SM, Kim BK. 2000a. Water vapor permeability of shape-memory polyurethane with amorphous reversible phase. J. Polym. Sci. Part B: Polym. Phys. 38:3009–3010

    Article  CAS  Google Scholar 

  • Jeong HM, Lee SY, Kim BK. 2000b. Shape-memory polyurethane containing amorphous reversible phase. J. Mater. Sci. 35:1579–1583

    Article  CAS  Google Scholar 

  • Ji FL, Zhu Y, Hu JL, Liu Y, Yeung LY, Ye GD. 2006. Smart polymer fibres with shape-memory effect. Smart Mater. Struct. 15: 1547–1554

    Article  CAS  Google Scholar 

  • Jones IA, Hilton PA, Sallavanti R, Griffiths J. 1999. Use of infrared dyes for transmission laser welding of plastics, ICALEO 1999 Vol 87, Section B 1999, p 71–79.

    Google Scholar 

  • Kaursoin J, Agrawal AK. 2007. Melt spun thermoresponsive shape memory fibres based on polyurethanes. J. Appl. Polym. Sci. 103:2172–2182

    Article  CAS  Google Scholar 

  • Kim BK, Lee SY, Xu M. 1996. Polyurethanes having shape-memory effects. Polymer 37:5781–5793

    Article  CAS  Google Scholar 

  • Kim BK, Shin YJ, Cho SM. 2000. Shape-memory behavior of segmented polyurethanes with an amorphous reversible phase. J. Polym. Sci. B: Polym. Phys. 38:2652–2657

    Article  CAS  Google Scholar 

  • Lee BS, Chun BC, Chung YC, Sul KI, Cho JW. 2001. Structure and thermomechanical properties of polyurethane block copolymers with shape-memory effect. Macromolecules, 34:6431–6437

    Article  CAS  Google Scholar 

  • Lee S, Obendorf SK. 2006. Developing protective textile materials as barriers to liquid penetration using melt-electrospinning. J. Appl. Polym. Sci. 102: 3430–3437

    Article  CAS  Google Scholar 

  • Lee S, Obendorf SK. 2007. Use of electrospun nanofibre web for protective textile materials as barriers to liquid penetration. Text. Res. J. 77: 696–702

    Article  CAS  Google Scholar 

  • Lendlein A , Kelch S. 2002. Shape-Memory Polymers. Angew. Chem. Int. Ed. 41: 2034–2057

    Article  CAS  Google Scholar 

  • Lendlein A, Langer R. 2002. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676

    Article  Google Scholar 

  • Li D, Wang Y, Xia Y. 2003. Electrospinning of polymeric and ceramic nanofibres as uniaxially aligned arrays. Nano Lett. 3:1167–1171

    Article  CAS  Google Scholar 

  • Li D, Wang Y, Xia Y. 2004. Electrospinning nanofibres as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 16: 361–366

    Article  Google Scholar 

  • Li FK, Zhang X, Hou JN, Xu M, Luo X, Ma D, Kim BK. 1997. Studies on thermally stimulated shape-memory effect of segmented polyurethanes. J. Appl. Polym. Sci. 64:1511–1516

    Article  CAS  Google Scholar 

  • Liem H, Yeung LY, Hu JL. 2007. A prerequisite for the effective transfer of the shape-memory effect to cotton fibres. Smart Mater. Struct. 16:748–753

    Article  CAS  Google Scholar 

  • Lin JR, Chen LW. 1998. Study on shape-memory behavior of polyether-based polyurethanes. II. Influence of soft-segment molecular weight. J. Appl. Polym. Sci. 69:1575–1586

    Google Scholar 

  • Liu L, Huang ZM, He CL, Han XJ. 2006. Mechanical performance of laminated composites incorporated with nanofibrous membranes. Mater. Sci. Eng. A-Struct. 435–436: 309–317

    Article  Google Scholar 

  • Meng Q, Hu JL. 2008. Self-organizing alignment of carbon nanotube in shape memory segmented fibre prepared by in-situ polymerization and melt spinning. Composites: Part A 39: 314–321

    Article  Google Scholar 

  • Meng Q, Hu JL. 2008. Study on poly(e-caprolactone)-based shape memory copolymer fibre prepared by bulk polymerization and melt spinning. Polym. Adv. Technol. 19:131–136

    Article  CAS  Google Scholar 

  • Meng Q, Hu JL, Yeung LY. 2007. Electro-active shape memory fibre by incorporating multi-walled carbon nanotubes. Smart Mater. Struct. 16: 830–836

    Article  Google Scholar 

  • Meng Q, Hu JL, Zhu Y. 2007. Shape-memory polyurethane/multiwalled carbon nanotube fibres. J. Appl. Polym. Sci. 106:837–848

    Article  CAS  Google Scholar 

  • Meng Q, Hu JL, Zhu Y, Lu J, Liu Y. 2007. Morphology, phase separation, thermal and mechanical property differences of shape memory fibres prepared by different spinning methods. Smart Mater. Struct. 16:1192–1197

    Article  CAS  Google Scholar 

  • Meng Q, Hu JL, Zhu Y, Lu J, Liu Y. 2007. Polycaprolactone-based shape memory segmented polyurethane fibre. J. Appl. Polym. Sci. 106:2515–2523

    Article  CAS  Google Scholar 

  • Mondal S, Hu JL. 2007. Water vapor permeability of cotton fabrics coated with shape-memory polyurethane. Carbohyd. Polym. 67:282–287

    Article  CAS  Google Scholar 

  • Otsuka K, Ren X. 1999. Physical metallurgy of Ti-Ni-based shape-memory alloys. Prog. Mater. Sci. 50:511–678

    Article  Google Scholar 

  • Park H, Kim J, Kang TJ. 2007. Application of electrospun polyurethane web to breathable water-proof fabrics. Fibre Polym. 8: 564–570

    Article  Google Scholar 

  • Ping P, Wang WS, Chen XS, Jing XB. 2005. Poly(e-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 6:587–592

    Article  Google Scholar 

  • Shenoy AV, Saini DR. 2003. Melt flow index: more than just a quality control parameter. Adv. Polym. Tech. 6:1–58

    Article  Google Scholar 

  • Tajbakhsh AR, Terentjev EM. 2001. Spontaneous thermal expansion of nematic elastomers. Eur. Phys. J. E 6:181–188

    Article  CAS  Google Scholar 

  • Takahashi T, Hayashi N, Hayashi S. 1996. Structure and properties of shape-memory polyurethane block copolymers. J. Appl. Polym. Sci. 60:1061–1069

    Article  CAS  Google Scholar 

  • Tan S, Huang X, Wu B. 2007. Some fascinating phenomena in electrospinning processes and applications of electrospun nanofibres. Polym. Int. 56: 1330–1339

    Article  CAS  Google Scholar 

  • Teo1 WE, Ramakrishna1 S. 2006. A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89–R106

    Article  CAS  Google Scholar 

  • Tobushi H, Yamada E, Hayashi S. 1996. Thermomechanical properties in a thin film of shape-memory polymer of polyurethane series. Smart Mater. Struct. 5:483–491

    Article  CAS  Google Scholar 

  • Toyota Jidosha KK. 1985. Laser beam welding of plastic plates, Patent Application JP85213304, 26 September 1985.

    Google Scholar 

  • Yang JH, Chun BC, Chung YC, Cho JW. 2003. Comparison of thermal/mechanical properties and shape-memory effect of polyurethane block-copolymers with planar or bent shape of hard segment. Polymer, 44:3251–3258

    Article  CAS  Google Scholar 

  • Zhu Y, Hu JL, Yeung LY, Liu Y, Ji F, Yeung KW. 2006. Development of shape-memory polyurethane fibre with complete shape recoverability. Smart Mater. Struct. 15:1385–1394

    Article  CAS  Google Scholar 

  • Zhu Y, Yeung LY, Lu J, Meng Q, Chen SJ, Yeung KW, Hu JL. 2007. Effect of steaming on shape-memory polyurethane fibres with various hard segment contents. Smart Mater. Struct. 16:969–981

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ji, Y. et al. (2009). Innovative Textile Materials, Stiffening Procedures and Fabric-Joining Methods. In: Walter, L., Kartsounis, GA., Carosio, S. (eds) Transforming Clothing Production into a Demand-driven, Knowledge-based, High-tech Industry. Springer, London. https://doi.org/10.1007/978-1-84882-608-3_3

Download citation

Publish with us

Policies and ethics