Skip to main content

Exergy Analysis of Green Energy Systems

  • Chapter
Green Energy

Part of the book series: Progress in Green Energy ((PGE,volume 1))

Abstract

Exergy analysis is a thermodynamic analysis technique based primarily on the Second Law of Thermodynamics. As an alternative to energy analysis, exergy analysis provides an illuminating means of assessing and comparing processes and systems rationally and meaningfully. Consequently, exergy analysis can assist in improving and optimizing designs. Two key features of exergy analysis are (1) it yields efficiencies which provide a true measure of how nearly actual performance approaches the ideal, and (2) it identifies more clearly than energy analysis the types, causes and locations of thermodynamic losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brodyanski VM, Sorin MV, Le Goff P. The Efficiency of Industrial Processes: Exergy Analysis and Optimization. London: Elsevier, 1994.

    Google Scholar 

  2. Edgerton RH. Available Energy and Environmental Economics. Toronto: DC Heath, 1082.

    Google Scholar 

  3. Kotas TJ. The Exergy Method of Thermal Plant Analysis, Reprint edn. Malabar, Florida: Krieger, 1995.

    Google Scholar 

  4. Moran MJ. Availability Analysis: A Guide to Efficient Energy Use, Revised edn. New York: American Society of Mechanical Engineers, 1989.

    Google Scholar 

  5. Sato N. Chemical Energy and Exergy: An Introduction to Chemical Thermodynamics for Engineers. Oxford: Elsevier, 2005.

    Google Scholar 

  6. Szargut J. Exergy Method: Technical and Ecological Applications. Southampton, WIT Press, 2005.

    Google Scholar 

  7. Szargut J, Morris DR, Steward FR. Exergy Analysis of Thermal, Chemical and Metallurgical Processes. New York: Hemisphere, 1988.

    Google Scholar 

  8. Yantovskii EI. Energy and Exergy Currents: An Introduction to Exergonomics. New York: Nova Science Publishers, 1994.

    Google Scholar 

  9. Dincer I, Rosen MA. Exergy: Energy, Environment and Sustainable Development, Oxford: Elsevier, 2007.

    Google Scholar 

  10. El-Sayed Y. The Thermoeconomics of Energy Conversion. Amsterdam: Elsevier, 2004.

    Google Scholar 

  11. Hammond GP. Engineering sustainability: thermodynamics, energy systems, and the environment. Int J Energy Res 2004; 28(7):613–639.

    Article  Google Scholar 

  12. Wall G. Exergy tools. Proceedings of the Institution of Mechanical Engineers, Part A. J Power Energy 2003; 217(2):125–136.

    Google Scholar 

  13. Moran MJ, Sciubba E. Exergy analysis: principles and practice. J Eng Gas Turbines Power 1994; 116:285–290.

    Article  Google Scholar 

  14. Rosen MA. Second law analysis: approaches and implications. Int J Energy Res 1999; 23:415–429.

    Article  Google Scholar 

  15. Sciubba E. Exergo-economics: thermodynamic foundation for a more rational resource use. Int J Energy Res 2005; 29:613–636.

    Article  Google Scholar 

  16. Rosen MA, Le MN, Dincer I. Efficiency analysis of a cogeneration and district energy system. Appl Thermal Eng 2005; 25(1):147–159.

    Article  Google Scholar 

  17. Rosen MA, Dincer I. Exergoeconomic analysis of power plants operating on various fuels. Appl Thermal Eng 2003; 23(6):643–658.

    Article  Google Scholar 

  18. Rosen MA, Dincer I. Thermoeconomic analysis of power plants: an application to a coalfired electrical generating station. Energy Convers Manage 2003; 44(17):2743–2761.

    Article  Google Scholar 

  19. Rosen MA, Dincer I. A study of industrial steam process heating through exergy analysis. Int J Energy Res 2004; 28(10):917–930.

    Article  Google Scholar 

  20. Rosen MA, Etele J. 2004. Aerospace systems and exergy analysis: applications and methodology development needs. Int J Exergy 2004; 1(4):411–425.

    Article  Google Scholar 

  21. Rosen MA, Scott DS. 1998. Comparative efficiency assessments for a range of hydrogen production processes. Int J Hydrogen Energy 1998; 23:653–659.

    Article  Google Scholar 

  22. Rosen MA, Horazak DA. Energy and exergy analyses of PFBC power plants. In Alvarez Cuenca M, Anthony EJ (eds), Pressurized Fluidized Bed Combustion. London: Chapman and Hall, Chapter 11, pp. 419–448, 1995.

    Chapter  Google Scholar 

  23. Dincer I, Rosen MA. Thermal Energy Storage: Systems and Applications. Chichester: Wiley, 2002.

    Google Scholar 

  24. Rosen MA, Tang R, Dincer I. Effect of stratification on energy and exergy capacities in thermal storage systems. Int J Energy Research 2004; 28:177–193.

    Article  Google Scholar 

  25. Rosen MA, Dincer I. Sectoral energy and exergy modeling of Turkey. ASME J. Energy Resources Technol 1997; 119:200–204.

    Article  Google Scholar 

  26. Rosen MA. Evaluation of energy utilization efficiency in Canada using energy and exergy analyses. Energy – Int J 1992; 17:339–350.

    Google Scholar 

  27. Crane P, Scott DS, Rosen MA. Comparison of exergy of emissions from two energy conversion technologies, considering potential for environmental impact. Int J Hydrogen Energy 1992; 17:345–350.

    Article  Google Scholar 

  28. Rosen MA, Dincer I. On exergy and environmental impact. Int J Energy Res 1997; 21:643–654.

    Article  Google Scholar 

  29. Rosen MA, Dincer I. Exergy analysis of waste emissions. Int J Energy Res 1999; 23(13):1153–1163.

    Article  Google Scholar 

  30. Gunnewiek LH, Rosen MA. Relation between the exergy of waste emissions and measures of environmental impact. Int J Environ Pollut 1998; 10(2):261–272.

    Article  Google Scholar 

  31. Midilli A, Ay M, Dincer I, Rosen MA. On hydrogen and hydrogen energy strategies–I: current status and needs. Renewable Sustainable Energy Rev 2005; 9(3):255–271.

    Article  Google Scholar 

  32. Midilli A, Dincer I, Ay M. Green energy strategies for sustainable development. Energy Policy 2006; 34(18):3623–3633.

    Article  Google Scholar 

  33. Bruntland Commission. Our Common Future, World Commission on Environment and Development. Oxford: Oxford University Press, 1987.

    Google Scholar 

  34. Ruth M. A quest for the economics of sustainability and the sustainability of economics. Ecol Econ 2006; 56(3):332–342.

    Article  Google Scholar 

  35. Jefferson M. Sustainable energy development: performance and prospects. Renewable Energy 2006; 31(5):571–582.

    Article  MathSciNet  Google Scholar 

  36. Dincer I, Rosen MA. Exergy as a driver for achieving sustainability. Int J Green Energy 2004; 1(1):1–19.

    Article  Google Scholar 

  37. Midilli A, Ay M, Dincer I, Rosen MA. On hydrogen energy strategy: the key role in this century and beyond. Proceedings of the First Cappadocia International Mechanical Engineering Symposium (CMES–04), 2004; 1:211–217, Cappadocia, Turkey.

    Google Scholar 

  38. Midilli A, Ay M, Dincer I, Rosen MA. On hydrogen and hydrogen energy strategies–I: current status and needs. Renewable Sustainable Energy Rev 2005; 9(3):255–271.

    Article  Google Scholar 

  39. Suganthi L, Samuel AA. Exergy based supply side energy management for sustainable energy development. Renewable Energy 2000; 19(1–2):285–290.

    Article  Google Scholar 

  40. Momirlan M, Veziroglu TN. Current status of hydrogen energy. Renewable Sustainable Energy Rev 2002; 6(1–2):141–179.

    Article  Google Scholar 

  41. Momirlan M, Veziroglu TN. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int J Hydrogen Energy 2005; 30(7):795–802.

    Article  Google Scholar 

  42. Afgan NH, Carvalho MG. Sustainability assessment of hydrogen energy systems. Int J Hydrogen Energy 2004; 29(13):1327–1342.

    Article  Google Scholar 

  43. Dincer I, Rosen MA. Thermodynamic aspects of renewables and sustainable development. Renewable Sustainable Energy Rev 2005; 9:169–189.

    Article  Google Scholar 

  44. Midilli A, Ay M, Dincer I, Rosen MA. On hydrogen and hydrogen energy strategies–II: future projections affecting global stability and unrest. Renewable Sustainable Energy Rev 2005; 9(3):273–287.

    Article  Google Scholar 

  45. Newman L. Change, uncertainty, and futures of sustainable development. Futures 2006; 38(5):633–637.

    Article  Google Scholar 

  46. Madlener R, Stagl TS. Sustainability–guided promotion of renewable electricity generation. Ecol Econ 2005; 53:147–167.

    Article  Google Scholar 

  47. Dincer I, Renewable energy and sustainable development: a crucial review. Renewable Sustainable Energy Rev 2000; 4(2):157–75.

    Article  Google Scholar 

  48. Dincer I. The role of exergy in energy policy making. Energy Policy 2002; 30:137–149.

    Article  Google Scholar 

  49. Lucca G. The exergy analysis: role and didactic importance of a standard use of basic concepts, terms and symbols. A Future for Energy: Proceedings of Florence World Energy Research Symposium, pp. 295–308, 1990.

    Google Scholar 

  50. Baehr HD, Schmidt EF. Definition und Berechnung von Brennstoffexergien (Definition and calculation of fuel exergy). Brennst–Waerme–Kraft 1963; 15:375–381.

    Google Scholar 

  51. Gaggioli RA, Petit PJ. Use the second law first. Chemtech 1977; 7:496–506.

    Google Scholar 

  52. Rodriguez LSJ. Calculation of available–energy quantities. In Thermodynamics: Second Law Analysis. ACS Symposium Series 1980; 122:39–60.

    Article  Google Scholar 

  53. Szargut J. Grenzen fuer die Anwendungsmoeglichkeiten des Exergiebegriffs (limits of the applicability of the exergy concept). Brennst.–Waerme–Kraft 1967; 19:309–313.

    Google Scholar 

  54. Sussman MV. Steady–flow availability and the standard chemical availability. Energy – Int J 1980; 5:793–804.

    Google Scholar 

  55. Sussman MV. Second law efficiencies and reference states for exergy analysis. Proceedings of. 2nd World Congress Chemical Engineering, Canadian Society of Chemical Engineers, Montreal, pp. 420–421, 1981.

    Google Scholar 

  56. Ahrendts J. Reference states. Energy – Int J 1980; 5:667–678.

    Google Scholar 

  57. Bosnjakovic F. Bezugszustand der Exergie eines reagiernden Systems (Reference states of the exergy in a reacting system). Forsch. Ingenieurw 1963; 20:151–152.

    Article  Google Scholar 

  58. Wepfer WJ, Gaggioli RA. Reference datums for available energy. In Thermodynamics: Second Law Analysis. ACS Symposium Series 122, American Chemical Society, Washington, pp. 77–92, 1980.

    Google Scholar 

  59. Rosen MA, Dincer I. Effect of varying dead–state properties on energy and exergy analyses of thermal systems. Int J Thermal Sci 2004; 43(2):121–133.

    Article  Google Scholar 

  60. Hafele W. Energy in a Finite World: A Global Systems Analysis. Toronto: Ballinger, 1981.

    Google Scholar 

  61. Gaggioli RA. Second law analysis to improve process and energy engineering. In Efficiency and Costing: Second Law Analysis of Processes. ACS Symposium Series 235, pp. 3–50, Washington, DC: American Chemical Society, 1983.

    Google Scholar 

  62. Jaefarzadeh MR. Thermal behavior of a small salinity–gradient solar pond with wall shading effect. Solar Energy 2004; 77:281–290.

    Article  Google Scholar 

  63. Kurt H, Halici F, Korhan Binark A. Solar pond conception–experimental and theoretical studies. Energy Convers Manage 2000; 41, 9:939–951.

    Article  Google Scholar 

  64. Ouni M, Guizani A, Lu,H, Belghith A. Simulation of the control of a salt gradient solar pond in the south of Tunisia. Solar Energy 2003; 75(2):95–101.

    Article  Google Scholar 

  65. Ramadan MRI, El-Sebaii AA, Aboul-Enein S, Khallaf AM. Experimental testing of a shallow solar pond with continuous heat extraction. Energy Buildings 2004; 36:955–964.

    Article  Google Scholar 

  66. Sozen A. Effect of irreversibilities on performance of an absorption heat transformer used to increase solar pond’s temperature. Renewable Energy 2003; 29:501–515.

    Article  Google Scholar 

  67. Yi Li X, Kanayama K, Baba H. Spectral calculation of the thermal performance of a solar pond and comparison of the results with experiments. Renewable Energy 2000; 20:371–373.

    Article  Google Scholar 

  68. Karakilcik M, Dincer I. Exergetic performance analysis of a solar pond, International Journal of Thermal Sciences 2008; 47(1):93–102.

    Article  Google Scholar 

  69. Karakilcik M, Dincer I, Rosen MA. Performance investigation of a solar pond. Appl Thermal Eng 2006; 26:727–735.

    Article  Google Scholar 

  70. Karakilcik M, Kıymaç K, Dincer I. Experimental and theoretical distributions in a solar pond. Int J Heat Mass Transfer 2006; 49:825–835.

    Article  Google Scholar 

  71. Hawlader MNA. The influence of the extinction coefficient on the effectiveness of solar ponds. Solar Energy 1980; 25:461–464.

    Article  Google Scholar 

  72. Bryant HC, Colbeck,I. A solar pond for London. Solar Energy 1977; 19:321.

    Article  Google Scholar 

  73. Petala R. Exergy of undiluted thermal radiations. Solar Energy 2003; 74:469–488.

    Article  Google Scholar 

  74. Krige DG. A statistical approach to some basic mine evaluation problems on the Witwateround. J Chim Min Soc South-Africa 1951; 52:119–139.

    Google Scholar 

  75. Petersen EL, Mortensen NG, Landberg L, Hojstrup J, Frank HP. Wind power meteorology – part I: climate and turbulence. Wind Energy, pp. 25–45, 1998.

    Google Scholar 

  76. Wind power monthly. http://www.windpower–monthly.com/WPM: WINDICATOR

    Google Scholar 

  77. Şahin AD. Progress and recent trends in wind energy. Prog Energy Combust Sci 2004; 30:501–543.

    Article  Google Scholar 

  78. Koroneos C, Spachos N, Moussiopoulos N. Exergy analysis of renewable energy sources. Renewable Energy 2003; 28:295–310.

    Article  Google Scholar 

  79. Jia GZ, Wang XY, Wu GM. Investigation on wind energy–compressed air power system. J Zhejiang University Sci 2004; 5(3):290–295.

    Article  MATH  Google Scholar 

  80. Goff LH, Hasert UF, Goff PL. A “new” source of renewable energy: the coldness of the wind. Revue Generale de Thermique 1999; 38(10):916–924.

    Article  Google Scholar 

  81. Stull R. Meteorology for Scientists and Engineers, 2nd edn. Pacific Grove: Brooks/Cole Thomson Learning, 2000.

    Google Scholar 

  82. Osczevski RJ. Windward cooling: an overlooked factor in the calculation of wind chill. Bull Am Met Soc 2000; 81(12):2975–2978.

    Article  Google Scholar 

  83. Zecher JBM. A new approach to an accurate wind chill factor. Bull Am Met Soc 1999; 80(9):1893–1899.

    Article  Google Scholar 

  84. JAG/TI. New wind chill equation. August, Toronto, Canada, 2001.

    Google Scholar 

  85. Betz A. Windenergie und ihre Ausnutzung durch Windmühlen. Göttingen: Vandenhoek and Ruprecht, Göttingen, 1946.

    Google Scholar 

  86. Froude RE. On the part played in propulsion by differences of fluid pressure. Trans. Inst. Naval Architects 1889; 30:390.

    Google Scholar 

  87. Golding EW. The Generation of Electricity by Wind Power. London: E.&F. N. Spon, 1955.

    Google Scholar 

  88. Spera DA. Wind Turbine Technology. New York: ASME, 1998.

    Google Scholar 

  89. Petersen TF, Petersen SM, Paulsen US, Fabian O, Pedersen BM, Velk P, Brink M, Gjerding J, Frandsen S, Olesen J, Budtz L, Nielsen MA, Stiesdal H, Petersen KØ, Danwin PL, Danwin LJ, Friis P. Recommendation for wind turbine power curve measurements to be used for type approval of wind turbines in relation to technical requirements for type approval and certification of wind turbines in Denmark, Danish Energy Agency, 1992.

    Google Scholar 

  90. Şahin AD, Dincer I, Rosen MA. Thermodynamic analysis of wind energy. Int J Energy Res 2006; 30:553–566.

    Article  Google Scholar 

  91. Ontario Weather Data. http://www.theweather network.com/weather/stats/north_america.htm, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Dincer, I., Rosen, M. (2011). Exergy Analysis of Green Energy Systems. In: Li, X. (eds) Green Energy. Progress in Green Energy, vol 1. Springer, London. https://doi.org/10.1007/978-1-84882-647-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-647-2_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-646-5

  • Online ISBN: 978-1-84882-647-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics