Skip to main content

Evaluation of Transformer Technical Characteristics

  • Chapter
Spotlight on Modern Transformer Design

Part of the book series: Power Systems ((POWSYS))

  • 2086 Accesses

Abstract

This chapter is devoted to the evaluation of transformer technical characteristics. Decision trees and artificial neural networks are used to solve the noload loss classification problem. Artificial neural networks are used to solve the no-load loss prediction problem. Impedance voltage evaluation is implemented using a particular finite element model with detailed representation of winding geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amoiralis EI, Tsili MA, Georgilakis PS (2008) The state of the art in engineering methods for transformer design and optimization: a survey. Journal of Optoelectronics and Advanced Materials 10(5):1149–1158

    Google Scholar 

  • Andersen OW (1973) Transformer leakage flux program based on the finite element method. IEEE Transactions on Power Apparatus and Systems 92(2):682–689

    Article  Google Scholar 

  • Annakkage UD, McLaren PG, Dircks E, Jayasinghe RP, Parker AD (2000) A current transformer model based on the Jiles-Atherton theory of ferromagnetic hysteresis. IEEE Transactions on Power Delivery 15:57–61

    Article  Google Scholar 

  • Basak A, Bonyar AA (1992) Effects of transformer core assembly on building factors. Journal of Magnetism and Magnetic Materials 112:406–408

    Article  Google Scholar 

  • Basak A, Yu CH, Lloyd G (1994) Core loss computation of a 1000 kVA distribution transformer. Journal of Magnetism and Magnetic Materials 133:564–567

    Article  Google Scholar 

  • Bertotti G (1988) General properties of power losses in soft ferromagnetic materials. IEEE Transactions on Magnetics 24:621–630

    Article  Google Scholar 

  • Digby SH, Sim HJ (2002) Transformer design for dual-voltage applications. Proc IEEE Rural Electric Power Conference

    Google Scholar 

  • Djurovic M, Carpenter CJ (1975) 3-dimensional computation of transformer leakage fields and associated losses. IEEE Transactions on Magnetics 11(5):1535–1537

    Article  Google Scholar 

  • Doulamis ND, Doulamis AD, Georgilakis PS, Kollias SD, Hatziargyriou ND (2002) A synergetic neural network-genetic scheme for optimal transformer construction. Integrated Computer-Aided Engineering 9:37–56

    Google Scholar 

  • Dymkov A (1975) Transformer design. Mir Publishers, Moscow

    Google Scholar 

  • Ebert JA (1995) Criteria for reliable dual voltage power transformers. IEEE Transactions on Power Delivery 10(2):845–852

    Article  Google Scholar 

  • Elleuch M, Poloujadoff M (1996) A contribution to the modeling of three phase transformers using reluctances. IEEE Transactions on Magnetics 32:3335–3343

    Article  Google Scholar 

  • Elleuch M, Poloujadoff M (2003) Analytical model of iron losses in power transformers. IEEE Transactions on Magnetics 39(2):973–980

    Article  Google Scholar 

  • Enokizono M, Soda N (1997) Finite element analysis of transformer model core with measured reluctivity tensor. IEEE Transactions on Magnetics 33(5):4110–4112

    Article  Google Scholar 

  • Enokizono M, Soda N (1998) Direct magnetic loss analysis by FEM considering vector magnetic properties. IEEE Transactions on Magnetics 34(5):3008–3011

    Article  Google Scholar 

  • Enokizono M, Soda N (1999) Core loss analysis of transformer by improved FEM. Journal of Magnetism and Magnetic Materials 196-197:910–912

    Article  Google Scholar 

  • Enokizono M, Yuki K, Kawano S (1995) An improved magnetic field analysis in oriented steel sheet by finite element method considering tensor reluctivity. IEEE Transactions on Magnetics 31(3):1797–1800

    Article  Google Scholar 

  • Escarela-Perez R, Kulkarni SV, Kodela NK, Olivares-Galvan JC (2007) Asymmetry during loadloss measurement of three-phase three-limb transformers. IEEE Transactions on Power Delivery 22(3):1566–1574

    Article  Google Scholar 

  • Fecich D, Balmer L (1985) Process factors of transformer cores made from 0.18 mm, 0.23 mm, and 0.28 mm thick grain oriented steel. IEEE Transactions on Magnetics 21(5):1915–1917

    Article  Google Scholar 

  • Fiorello F, Novikov M (1990) An improved approach to power loss in magnetic laminations under nonsinusoidal induction waveform. IEEE Transactions on Magnetics 26:2904–2910

    Article  Google Scholar 

  • Georgilakis PS (2000) Contribution of artificial intelligence techniques in the reduction of distribution transformer iron losses. PhD dissertation. National Technical University of Athens, Athens, Greece

    Google Scholar 

  • Georgilakis PS, Hatziargyriou ND (1999) Machine learning applications in the transformer manufacturing industry. Proc Advanced Course on Artificial Intelligence 57–65

    Google Scholar 

  • Georgilakis P, Hatziargyriou N (2002) On the application of artificial intelligence techniques to the quality improvement of industrial processes. Lecture Notes in Computer Science 2308:473–484

    Article  Google Scholar 

  • Georgilakis PS, Bakopoulos JA, Hatziargyriou ND (1997) A decision tree method for prediction of distribution transformer iron losses. Proc Universities Power Engineering Conference 1:257–260

    Google Scholar 

  • Georgilakis PS, Hatziargyriou ND, Souflaris AT (1998a) Artificial intelligence approaches to distribution transformer core quality improvement. Proc International Conference on Electrical Machines 1:541–546

    Google Scholar 

  • Georgilakis PS, Hatziargyriou ND, Doulamis ND, Doulamis AD, Kollias SD (1998b) Prediction of iron losses of wound core distribution transformers based on artificial neural networks. Neurocomputing 23:15–29

    Article  Google Scholar 

  • Georgilakis PS, Hatziargyriou ND, Paparigas D (1999a) AI helps reduce transformer iron losses. IEEE Computer Applications in Power 12(4):41–46

    Article  Google Scholar 

  • Georgilakis PS, Hatziargyriou ND, Doulamis ND, Doulamis AD, Bakopoulos JA (1999b) An efficient PC-based environment for the improvement of magnetic cores industrial process. In: Tzafestas SG (ed.) Advances in manufacturing: decision, control, and information technology. Springer, London

    Google Scholar 

  • Georgilakis P, Hatziargyriou N, Paparigas D, Bakopoulos J, Elefsiniotis S (1999c) Automatic learning techniques for on-line control and optimization of transformer core manufacturing process. Proc IEEE Industry Applications Society Annual Meeting 1:311–322

    Google Scholar 

  • Georgilakis P, Hatziargyriou N, Paparigas D, Bakopoulos J (1999d) On-line combined use of neural networks and genetic algorithms to the solution of transformer iron loss reduction problem. Proc IEEE PowerTech

    Google Scholar 

  • Georgilakis PS, Hatziargyriou ND, Doulamis AD, Doulamis ND, Kollias SD (1999e) A neural network framework for predicting transformer core losses. Proc IEEE International Conference on Power Industry Computer Applications 1:301–308

    Google Scholar 

  • Georgilakis PS, Doulamis ND, Doulamis AD, Hatziargyriou ND, Kollias SD (2001a) A novel iron loss reduction technique for distribution transformers based on a genetic algorithmneural network approach. IEEE Transactions on Systems, Man, and Cybernetics, Part C 31(1):16–34

    Article  Google Scholar 

  • Georgilakis P, Hatziargyriou N, Paparigas D, Elefsiniotis S (2001b) Effective use of magnetic materials in transformer manufacturing. Journal of Materials Processing Technology 108:209–212

    Article  Google Scholar 

  • Girgis RS, teNyenhuis EG, Gramm K, Wrethag JE (1998) Experimental investigations on effect of core production attributes on transformer core loss performance. IEEE Transactions on Power Delivery 13(2):526–531

    Article  Google Scholar 

  • Godec Z (1977) Influence of slitting on core losses and magnetization curve of grain-oriented electrical steels. IEEE Transactions on Magnetics 13(4):1053–1057

    Article  Google Scholar 

  • Hatziargyriou ND, Prousalidis JM, Papadias BC (1993) A generalized transformer model based on the analysis of its magnetic circuit. IEE Proceedings, Part C 140(4):269–278

    Google Scholar 

  • Hatziargyriou N, Georgilakis P, Spiliopoulos D, Bakopoulos J (1998a) Quality improvement of individual cores of distribution transformers using decision trees. International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications 6(3):141–146

    Google Scholar 

  • Hatziargyriou ND, Georgilakis PS, Paparigas DG, Bakopoulos JA (1998b) Prediction of distribution transformer no-load losses using the learning vector quantization neural network. Proc IEEE Mediterranean Electrotechnical Conference 2:1180–1184

    Google Scholar 

  • Ilo A, Weiser B, Booth T, Pfutzner H (1996) Influence of geometric parameters on the magnetic properties of model transformer cores. Journal of Magnetism and Magnetic Materials 160:38–40

    Article  Google Scholar 

  • Im CH, Kim HK, Lee CH, Jung HK (2001) Analysis of the three-phase transformer considering the nonlinear and anisotropic properties using the transmission line modeling method and FEM. IEEE Transactions on Magnetics 37(5):3490–3493

    Article  Google Scholar 

  • Jiles DC, Atherton DL (1986) Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials 61:48–60

    Article  Google Scholar 

  • Kaimori H, Kameari A, Fujiwara K (2007) FEM computation of magnetic field and iron loss in laminated iron core using homogenization method. IEEE Transactions on Magnetics 43(4):1405–1408

    Article  Google Scholar 

  • Kalokiris GK, Kladas AG, Hatzilau IK, Cofinas S, Gyparis IK (2007) Advances in magnetic materials and their impact on electric machine design. Journal of Materials Processing Technology 181(1-3):148–152

    Article  Google Scholar 

  • Kanada T, Enokizono M, Kawamura K, Sievert JD (1996) Distributions on localized iron loss of three-phase amorphous transformer model core by using two-dimensional magnetic tensor. IEEE Transactions on Magnetics 32(5):4797–4799

    Article  Google Scholar 

  • Kefalas TD, Georgilakis PS, Kladas AG, Souflaris AT, Paparigas, DG (2008) Multiple grade lamination wound core: a novel technique for transformer iron loss minimization using simulated annealing with restarts and an anisotropy model. IEEE Transactions on Magnetics 44(6):1082–1085

    Article  Google Scholar 

  • Kladas A, Tegopoulos J (1992) A new scalar potential formulation for 3D magnetostatics necessitating no source field calculation. IEEE Transactions on Magnetics 28:1103–1106

    Article  Google Scholar 

  • Kladas AG, Papadopoulos MP, Tegopoulos JA (1994) Leakage flux and force calculation on power transformer windings under short-circuit: 2D and 3D models based on the theory of images and the finite element method compared to measurements. IEEE Transactions on Magnetics 30(5):3487–3490

    Article  Google Scholar 

  • Kobayashi H (1981) Modeling and analysis. Addison-Welsey, Reading, MA

    Google Scholar 

  • Kulkarni SV, Khaparde SA (2004) Transformer engineering: design and practice. Marcel- Dekker, New York

    Google Scholar 

  • Kulkarni SV, Olivares JC, Escarela-Perez R, Lakhiani VK, Turowski J (2004) Evaluation of eddy current losses in the cover plates of distribution transformers. IEE Proc Science, Measurement and Technology 151(5):313–318

    Article  Google Scholar 

  • Ling PCY, Moses AJ, McQuade F, Grimmond W, Fox D (1992) Investigation of magnetic degradation of wound cores due to adhesive bonding. Journal of Magnetism and Magnetic Materials 112:77–80

    Article  Google Scholar 

  • Logothetis N (1992) Managing for total quality. Prentice-Hall International, UK

    Google Scholar 

  • Lu J, Yuan J, Chen L, Sheng J, Ma X (1998) Calculation of short-circuit reactance of transformers by a line integral based on surface magnetic charges. IEEE Transactions on Magnetics 34(5):3483–3486

    Article  Google Scholar 

  • Mechler GF, Girgis RS (1998) Calculation of spatial loss distribution in stacked power and distribution transformer cores. IEEE Transactions on Power Delivery 13(2):532–537

    Article  Google Scholar 

  • Mechler GF, Girgis RS (2000) Magnetic flux distributions in transformer core joints. IEEE Transactions on Power Delivery 15(1):198–203

    Article  Google Scholar 

  • Miti GK, Moses AJ, Derebasi N, Fox D (2003) A neural network-based tool for magnetic performance prediction of toroidal cores. Journal of Magnetism and Magnetic Materials 254- 255:262–264

    Article  Google Scholar 

  • Mittle VN, Mittal A (1996) Design of electrical machines, 4th edn. Standard Publishers Distributors, Delhi

    Google Scholar 

  • Mork BA (1999) Five-legged wound-core transformer model: derivation, parameters, implementation, and evaluation. IEEE Transactions on Power Delivery 14:1519–1526

    Article  Google Scholar 

  • Moses AJ (1984) Factors affecting localized flux and iron loss distribution in laminated cores. Journal of Magnetism and Magnetic Materials 41:409–414

    Article  Google Scholar 

  • Moses AJ (1992) Development of alternative magnetic core materials and incentives for their use. Journal of Magnetism and Magnetic Materials 112:150–155

    Article  Google Scholar 

  • Moses AJ (1998) Comparison of transformer loss prediction from computed and measured flux density distribution. IEEE Transactions on Magnetics 34(4):1168–1170

    Article  MathSciNet  Google Scholar 

  • Moses AJ (2003) Prediction of core losses of three phase transformers from estimation of the components contributing to the building factor. Journal of Magnetism and Magnetic Materials 254-255:615–617

    Article  Google Scholar 

  • Nakata T, Takahashi N, Kawase Y, Nakano M (1984) Influence of lamination orientation and stacking on magnetic characteristics of grain-oriented silicon steel laminations. IEEE Transactions on Magnetics 20:1774–1776

    Article  Google Scholar 

  • Nussbaum C, Booth T, Ilo A, Pfutzner H (1996) A neural network for the prediction of performance parameters of transformer cores. Journal of Magnetism and Magnetic Materials 160:81– 83

    Article  Google Scholar 

  • Nussbaum C, Pfutzner H, Booth Th, Baumgartinger N, Ilo A, Clabian M (2000) Neural networks for the prediction of magnetic transformer core characteristics. IEEE Transactions on Magnetics 36(1):313–329

    Article  Google Scholar 

  • Olivares JC, Cañedo J, Moreno P, Driesen J, Escarela R, Palanivasagam S (2002) Experimental study to reduce the distribution-transformers stray losses using electromagnetic shields. Electric Power Systems Research 63(1):1–7

    Article  Google Scholar 

  • Olivares JC, Yilu L, Canedo JM, Escarela-Perez R, Driesen J, Moreno P (2003a) Reducing losses in distribution transformers. IEEE Transactions on Power Delivery 18(3):821–826

    Article  Google Scholar 

  • Olivares JC, Kulkarni SV, Canedo J, Escarela R, Driesen J, Moreno P (2003b) Impact of the joint design parameters on transformer losses. International Journal of Power & Energy Systems 23(3):151–157

    Google Scholar 

  • Olivares JC, Escarela-Perez R, Kulkarni SV, de Leon F, Melgoza-Vasquez E, Hernandez-Anaya O (2004a) Improved insert geometry for reducing tank-wall losses in pad-mounted transformers. IEEE Transactions on Power Delivery 19(3):1120–1126

    Article  Google Scholar 

  • Olivares JC, Escarela-Perez R, Kulkarni SV, de León F, Venegas-Vega MA (2004b) 2D finiteelement determination of tank wall losses in pad-mounted transformers. Electric Power Systems Research 71(2):179–185

    Article  Google Scholar 

  • Olivares-Galván JC, Georgilakis PS, Ocon-Valdez R (2009) A review of transformer losses. Electric Power Components and Systems, accepted for publication

    Google Scholar 

  • Proussalidis J, Hatziargyriou N, Kladas A (2001) Iron lamination efficient representation in power transformers. Journal of Materials Processing Technology 108:217–220

    Article  Google Scholar 

  • Raitsios P (2001) Leakage field of a transformer under conventional and superconducting condition. Journal of Materials Processing Technology 102:246–252

    Article  Google Scholar 

  • Rajakovic N, Semlyen A (1989a) Harmonic domain analysis of field variables related to eddy current and hysteresis losses in saturated laminations. IEEE Transactions on Power Delivery 4(2):1111–1116

    Article  Google Scholar 

  • Rajakovic N, Semlyen A (1989b) Investigation of the inrush phenomenon: a quasi-stationary approach in the harmonic domain. IEEE Transactions on Power Delivery 4(4):2114–2120

    Article  Google Scholar 

  • Rovolis P, Kladas A, Tegopoulos J (2007) Laminated iron core losses evaluation and measurements. Journal of Materials Processing Technology 181(1-3):182–185

    Article  Google Scholar 

  • Sato T, Sakaki Y (1990) Physical meaning of equivalent loss resistance of magnetic cores. IEEE Transactions on Magnetics 26:2894–2897

    Article  Google Scholar 

  • Semlyen A, Rajakovic N (1989) Harmonic domain modeling of laminated iron core. IEEE Transactions on Power Delivery 4(1):382–390

    Article  Google Scholar 

  • Soda N, Enokizono M (2000) Improvement of T-joint part constructions in three-phase transformer cores by using direct loss analysis with E&S model. IEEE Transactions on Magnetics 36(4):1285–1288

    Article  Google Scholar 

  • Taguchi G, Konishi S (1987) Taguchi methods: orthogonal arrays and linear graphs; tools for quality engineering. ASI, Dearborn, MI

    Google Scholar 

  • Tatis KB, Kladas AG, Tegopoulos JA (2004) Harmonic iron loss determination in laminated iron cores by using a particular 3-D finite-element model. IEEE Transactions on Magnetics 40(2):860–863

    Article  Google Scholar 

  • teNyenhuis EG, Girgis RS (2006) Measured variability of performance parameters of power and distribution transformers. Proc IEEE Power Engineering Society Transmission and Distribution Conference and Exposition, 523–528

    Google Scholar 

  • teNyenhuis EG, Mechler GF, Girgis RS (2000) Flux distribution and core loss calculation for single phase and five limb three phase transformer core designs. IEEE Transactions on Power Delivery 15(1):204–209

    Article  Google Scholar 

  • teNyenhuis EG, Girgis RS, Mechler GF (2001) Other factors contributing to the core loss performance of power and distribution transformers. IEEE Transactions on Power Delivery 16(4):648–653

    Article  Google Scholar 

  • Tomczuk B (1988) Analysis of 3D magnetic fields in high leakage reactance transformers. IEEE Transactions on Magnetics 30:94–97

    Google Scholar 

  • Tsili MA (2005) Development of mixed finite element – boundary element numerical techniques for the design of power transformers. PhD dissertation. National Technical University of Athens, Athens, Greece

    Google Scholar 

  • Tsili MA, Kladas AG, Georgilakis PS, Souflaris AT, Pitsilis CP, Bakopoulos JA, Paparigas DG (2004) Hybrid numerical techniques for power transformer modeling: a comparative analysis validated by measurements. IEEE Transactions on Magnetics 40(2):842–845

    Article  Google Scholar 

  • Tsili M, Kladas A, Georgilakis P, Souflaris A, Paparigas D (2005) Numerical techniques for design and modeling of distribution transformers. Journal of Materials Processing Technology 161(1-2):320–326

    Article  Google Scholar 

  • Tsili MA, Kladas AG, Georgilakis PS, Souflaris AT, Paparigas DG (2006) Advanced design methodology for single and dual voltage wound core power transformers based on a particular finite element model. Electric Power Systems Research 76:729–741

    Article  Google Scholar 

  • Tsili MA, Kladas AG, Georgilakis PS (2008) Computer aided analysis and design of power transformers. Computers in Industry 59(4):338–350

    Article  Google Scholar 

  • Turowski J, Turowski M, Kopec M (1990) Method of three-dimensional network solution of leakage field of three-phase transformers. IEEE Transactions on Magnetics 26(5):2911–2919

    Article  Google Scholar 

  • Valkovic Z (1982) Influence of transformer core design on power losses. IEEE Transactions on Magnetics 18:801–804

    Article  Google Scholar 

  • Valkovic Z (1984) Additional losses in three-phase transformer cores. Journal of Magnetism and Magnetic Materials 41:424–426

    Article  Google Scholar 

  • Valkovic Z, Rezic A (1992) Improvement of transformer core magnetic properties using the step-lap design. Journal of Magnetism and Magnetic Materials 112:413–415

    Article  Google Scholar 

  • Xiang C, Jinsha Y, Guoquiang Z, Yuanlu Z, Qifan H (1997) Analysis of leakage magnetic problems in shell-form power transformer. IEEE Transactions on Magnetics 33(2):2049–2051

    Article  Google Scholar 

  • Zakrzewski K, Kukaniszyn M (1992) Three-dimensional model of one- and three-phase transformer for leakage field calculation. IEEE Transactions on Magnetics 28(2):1344–1347

    Article  Google Scholar 

  • Zakrzewski K, Tomczuk B (1996) Magnetic field analysis and leakage inductance calculation in current transformer by means of 3D integral method. IEEE Transactions on Magnetics 32(3):1637–1640

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2009). Evaluation of Transformer Technical Characteristics. In: Spotlight on Modern Transformer Design. Power Systems. Springer, London. https://doi.org/10.1007/978-1-84882-667-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-667-0_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-666-3

  • Online ISBN: 978-1-84882-667-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics