Skip to main content

Surface Integrity – Definition and Importance in Functional Performance

  • Chapter
Surface Integrity in Machining

Abstract

This chapter presents an overview of the nature of the surface that results from manufacturing processes, as this nature has long been recognized as having a significant impact on the product performance, longevity and reliability. Surface alterations may include mechanical, metallurgical, chemical and other changes. These changes, although confined to a small surface layer, may limit the component quality or may, in some cases, render the surface unacceptable. A basic understanding of the changes in the condition of the surface is very much required if improvement in product quality is to be attained. Surface integrity (SI) reveals the influence of surface properties and condition upon which materials are likely to perform. It has long been known that the method of surface finishing and the complex combination of surface roughness, residual stress, cold work, and even phase transformations strongly influence the service behavior of manufactured parts as fatigue and stress corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hudson, B. (1992) Surface Science − An Introduction, Boston: Butterworth-Heinemann.

    Google Scholar 

  2. Riviere, J.C. (1990) Surface Analytical Techniques, Oxford: Oxford Science Publications.

    Google Scholar 

  3. Walls, J.M., ed. Methods of Surface Analysis: Techniques and Applications. 1992, Cambridge University Press: New York.

    Google Scholar 

  4. Asthana, P., Micro-and Nano-Scale Experimental Approach to Surface Engineering Metals, in Mechanical Engineering, in Mechanical Engineering. 2006, Texas A&M University: College Station, TX. p. 131.

    Google Scholar 

  5. Williams, J.A., Tabor, D. (1977) The role of lubricants in machining. Wear 43: 275−292.

    Article  Google Scholar 

  6. Gibbs, J.W. (1928) The Collected Works of J. Willard Gibbs, New York: Longmans, Green and Co.

    Google Scholar 

  7. Zangwill, A. (1988) Physics at Surfaces, Cambridge: Cambridge University Press.

    Google Scholar 

  8. Langmuir, I. (1960) The collected works of Irving Langmuir;: With contributions in memoriam, including a complete bibliography of his works. TWELVE VOLUME SET, New York: Pergamon Press.

    Google Scholar 

  9. Hudson, J.B. (1998) Surface Science: An Introduction, New York: John Wiley & Sons

    Google Scholar 

  10. Reidenbach, F., ed. ASM Handbook: Volume 5: Surface Engineering 10th edn. 1994, ASM International: Materials Park, OH.

    Google Scholar 

  11. Cotell, C.M., Sprague, J.A., Preface, Surface Engineering, in ASM Handbook. 1994, ASM International: Materials Park, OH.

    Google Scholar 

  12. King, R.I., Chapter 1: Historical Background, in Handbook of High-Speed Machining Technology, R.I. King, ed. 1985, New York: Chapman and Hall.

    Google Scholar 

  13. Graessley, W.W. (2003) Polymeric Liquids and Networks: Structure and Properties, New York: Taylor & Francis.

    Google Scholar 

  14. Finch, G.I., Quarrell, A. G., Roebuck, J. S. (1934) The Beilby Layer. Proceedings of the Royal Society of London. Series A 145(855): 676−681.

    Article  Google Scholar 

  15. Jirásková, Y., Svobodaa, J., Schneeweissa, O., Davesb, W., Fischer, F.D. (2005) Microscopic investigation of surface layers on rails Applied Surface Science 239(2): 132−141.

    Article  Google Scholar 

  16. Hirose, T., Tanigawa, H., Ando, M., Kohyama, A., Katoh, Y., Narui, M. (2002) Radiation effects on low cycle fatigue properties of reduced activation ferritic/martensitic steels Journal of Nuclear Materials 307−311: 304−307.

    Google Scholar 

  17. (2003) Characterization and Failure Analysis of Plastics, Materials Park, OH: ASM International. http://asmcommunity.asminternational.org/portal/site/www/AsmStore/ ProductDetails/?vgnextoid=66b975dfae0f8110VgnVCM100000701e010aRCRD

    Google Scholar 

  18. Sotnikov, A.A., Stepanov, V.N., Livshits, A.M., Bukchin, S.M. (1994) Improvement of turbine blade systems to reduce cavitation erosion Power Technology and Engineering 28(12): 746−750.

    Google Scholar 

  19. Masakazu, O., Hiroshi, M., Kazuyuki, M., Tomoyoshi, O., Masayuki, U. (2005) Surface corrosion of various kinds of metals by atmospheric pollution. Bulletin of Hiroshima Kokusai Gakuin University 38: 69−83.

    Google Scholar 

  20. M’Saoubi, R., Outeiro, J.C., Chandrasekaran, H., Dillon Jr., O.W. and Jawahir, I.S. (2008) A review of surface integrity in machining and its impact on functional performance and life of machined products. Int. J. Sustainable Manufacturing 1(1/2): 203−236.

    Google Scholar 

  21. Field, M., Kahles, J.F. (1964) The surface integrity of machined and ground high strength steels. DMIC Report 210: 54–77.

    Google Scholar 

  22. Field, M., Kahles, J.F. (1971) Review of surface integrity of machined components. Annals of the CIRP 20(2): 153–162.

    Google Scholar 

  23. Field, M., Kahles, J.F., Cammett, J.T. (1972) Review of measuring methods for surface integrity. Annals of the CIRP 21: 219–238.

    Google Scholar 

  24. Kalpakjian, S. and S.R. Schmid (2001) Manufacturing Engineering and Technology. 4th edition ed, New Jersey: Prentice-Hall.

    Google Scholar 

  25. Chou, Y.K., Evans, C.J. (1999) White layers and thermal modelling of hard turned surfaces. International Journal of Machine Tools and Manufacture 39: 1863–1881.

    Article  Google Scholar 

  26. Griffiths, B.J. (1993) Modeling complex force system, Part 1: The cutting and pad forces in deep drilling. ASME Transactions, Journal of Engineering for Industry 115: 169-176.

    Article  Google Scholar 

  27. Bosheh, S.S., Mativenga, P.T. (2006) White layer formation in previous termhard turning of H13 tool steel at high cutting speeds using CBN tooling. International Journal of Machine Tools and Manufacture 46(2): 225−233

    Article  Google Scholar 

  28. Stead, J.W. (1912) Micro-metallography and its practical applications. Journal of Western Scottish Iron and Steel Institute 19: 169–204.

    Google Scholar 

  29. Nakayama, K., Shaw, M.C., Brewer, R.C. (1966) Relationship between cutting forces, temperatures, built-up edge and surface finish Annals of CIRP 24: 211−223.

    Google Scholar 

  30. Masounave, J., Youssef, Y.A., Beauchamp, Y., Thomas, M. (1997) An experimental design for surface roughness and built-up edge formation in lathe dry turning. International Journal of Quality Science 2(3): 167−180.

    Article  Google Scholar 

  31. Stenphenson, D.A., Agapiou, J.S. (1996) Metal Cutting Theory and Practice, New York: Marcel Dekker.

    Google Scholar 

  32. Oberg, E., Jones, F.D., Horton, H.L., Ryffel, H.H. (2004) Machinery's Handbook. 27th edn, New York: Industrial Press.

    Google Scholar 

  33. Astakhov, V.P. (1998/1999) Metal Cutting Mechanics, Boca Raton, USA: CRC Press.

    Google Scholar 

  34. Atkins, A.G., Mai, Y.W. (1985) Elastic and Plastic Fracture: Metals, Polymers. Ceramics, Composites, Biological Materials, New York: John Wiley & Sons.

    Google Scholar 

  35. Astakhov, V.P. (2006) Tribology of Metal Cutting. Tribology and Interface Engineering Series, No. 52, ed. B.J. Briscoe, London: Elsevier.

    Google Scholar 

  36. Komarovsky, A.A., Astakhov, V.P. (2002) Physics of Strength and Fracture Control: Fundamentals of the Adaptation of Engineering Materials and Structures, Boca Raton: CRC Press.

    Google Scholar 

  37. Zorev, N.N. (1966) Metal Cutting Mechanics. 1966, Pergamon Press: Oxford.

    Google Scholar 

  38. Javidi, A., ieger, U., Eichlseder, W. (2008) The effect of machining on the surface integrity and fatigue life. International Journal of Fatigue 30(10-11): 2050−2055.

    Article  Google Scholar 

  39. Seemikeri, C.Y., Brahmankar, P.K., Mahagaonkar, S.B. (2008) Investigations on surface integrity of AISI 1045 using LPB tool. Tribology International 41(8): 724−734.

    Article  Google Scholar 

  40. Liu, J., Yue, Z.F., Liu, Y.S. (2007) Surface finish of open holes on fatigue life. Theoretical and Applied Fracture Mechanics 47(1): 35−45.

    Article  Google Scholar 

  41. Choi, Y., Liu, C.R. (2006) Rolling contact fatigue life of finish hard machined surfaces: Part 1. Model development. Wear 261(5−6): 485−491.

    Article  Google Scholar 

  42. Matsumoto, Y., F. Hashimoto, and G. Lahoti (1999) Surface Integrity Generated by Precision Hard Turning. Annals of the CIRP 48/1: 59−62.

    Article  Google Scholar 

  43. Lennon, A.B., McCormack, B.A.O., Prendergast, P. J. (2003) The relationship between cement fatigue damage and implant surface finish in proximal femoral prostheses. Medical Engineering & Physics 25(10): 833−841.

    Article  Google Scholar 

  44. Paulin, C., Ville, F., Sainsot, P., Coulon, S., Lubrecht, T. (2003) Effect of rough surfaces on rolling contact fatigue theoretical and experimental analysis. Tribology and Interface Engineering Series 43: 611−617.

    Google Scholar 

  45. Hutson, A.L., Niinomi, M., Nicholas, T., Eylon, D. (2002) Effect of various surface conditions on fretting fatigue behavior of Ti–6Al–4 V. International Journal of Fatigue 24(12): 1223−1234.

    Article  Google Scholar 

  46. Chen, H.Y., Hickel, R., Setcos, J.C., Kunzelmann, K-H. (1999) Effects of surface finish and fatigue testing on the fracture strength of CAD-CAM and pressed-ceramic crowns. The Journal of Prosthetic Dentistry 82(4): 468−475.

    Article  Google Scholar 

  47. Bayoumi, M.R., Abdellatif, A.K. (1995) Effect of surface finish on fatigue strength. Engineering Fracture Mechanics 51(5): 861−870.

    Article  Google Scholar 

  48. Asquith, D.T., Yerokhin, A.L., Yates, J.R., Matthews, A. (2007) The effect of combined shot-peening and PEO treatment on the corrosion performance of 2024 Al alloy. Thin Solid Films 516(2−4): 417−421.

    Article  Google Scholar 

  49. Aballe, A., Bethencourt, M., Botana, F.J., Marcos, M., Sánchez-Amaya, J.M. (2004) Influence of the degree of polishing of alloy AA 5083 on its behaviour against localised alkaline corrosion. Corrosion Science 46(8): 1909−1920.

    Article  Google Scholar 

  50. Reddy, B.S.K., Ramamoorthy, B., Nair, P.K. (2005) Surface integrity aspects and their influence on corrosion behaviour of ground surfaces. IE(I)-Journal-PR 86: 35−38.

    Google Scholar 

  51. Poli, C. (2001) Design for Manufacturing: A Structured Approach, Woburn, MA: Butterworth-Heinemann.

    Google Scholar 

  52. Laroux, K. (1988) Troubleshooting Manufacturing Processes: Adapted from the Tool and Manufacturing Engineers Handbook: a Reference Book for Manufacturing Engineers, Managers, and Technicians, Dearborn, MI: SME.

    Google Scholar 

  53. Batchelor, A.W., Lam, L.N., Chandrasekaran, M. (1999) Materials Degradation and its Control by Surface Engineering, London, UK: Imperial College Press.

    Google Scholar 

  54. Astakhov, V.P., Davim, P.J., Tools (geometry and material) and tool wear, in Machining: Fundamentals and Recent Advances, P.J.Davim, Editor. 2008, Springer: London. p. 29−58.

    Google Scholar 

  55. Nehoroshkov, S.V. (2006) Model of heat flows in cutting with inserts having heatsink (in Russian). Research in Russia 5(2): 1254−1256.

    Google Scholar 

  56. Kim, H.J., Matsumaru, K., Takata, A, Ishizaki, K. (2003) Grinding behavior of silicon wafer and sintered Al2O3 by constant-force-feeding grinding systems. Advances in Technology of Materials and Materials Processing Journal (ATM) 5(2): 50−53.

    Google Scholar 

  57. Kim, H.J., Matsumaru, K., Takata, A, Ishizaki, K. (2004) Reduction of ceramic machining defects by regulated force feeding grinding system. Advances in Technology of Materials and Materials Processing Journal (ATM) 6(2): 290−297.

    Google Scholar 

  58. Castellani, R., de Ruijter, J.E., Renggli, H., Jansen, J.A. (1999) Response of rat bone marrow cells to differently roughened titanium discs. Clin Oral Impl Res 10: 369−378.

    Article  Google Scholar 

  59. Anselme, K., Linez, P., Bigerelle, M., Le Manger, D., Hardouin, P., Hildebrand, H.F., Lost, A., Leroy, J.M. (2000) The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials (21): 1567−1577.

    Google Scholar 

  60. Bowers, K., Keller, J.C., Randolph, B., Wick, D., Michaels, C. (1992) Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Impl 7: 302−310.

    Google Scholar 

  61. Martin, J.Y., Schwartz, Z., Hummert, T.W., Schraub, D.M., Simpson, J., Lankford Jr, J., Dean, D.D., Cochran, D.L., Boyan, B.D. (1995) Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res 29: 389−401.

    Article  Google Scholar 

  62. Wennerberg, A., Albrektsson, T., Johansson, C., Andersson, B. (1996) Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials 17: 15−22.

    Article  Google Scholar 

  63. Groessner-Schreiber, B., Tuan, R.S. (1992) Enhanced extracellular matrix production and mineralization by osteoblasts cultured on titanium surfaces in vitro. J Cell Sci 101: 209−217.

    Google Scholar 

  64. Deligianni, D.D., Katsala, N.D., Koutsoukos, P.G., Missirllis, Y.F. (2001) Effect of surface roughness of hydoxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22: 87−96.

    Article  Google Scholar 

  65. Cooper, L.F., Masuda, T., Ylilheikkila, P.K., Felton, D.A. (1998) Generalizations regarding the process and phenomenon of osseointegration. Part II. In vitro studies. Int J Oral Maxillofac Implants 13: 163−174.

    Google Scholar 

  66. Wilke, A., Orth, J., Lomb, M., Fuhrmann, R., Kienapfel, H., Griss, P., Franke, R.P. (1998) Biocompatibility analysis of different biomaterials in human bone marrow cell cultures. J Biomed Mater Res 40: 301−306.

    Article  Google Scholar 

  67. Rosa, A.L., Beloti, M.M. (2003) Effect of cpTi surface roughness on human bone marrow cell attachment, proliferation, and differentiation. Braz. Dent. J. 14(1): 16−21.

    Article  Google Scholar 

  68. Astakhov, V.P. (1998) Metal Cutting Mechanics, Boca Raton: CRC Press.

    Google Scholar 

  69. Oberg, E., Jones, F.D., Horton, H.L., Ryffel, H.H. (2008) Machinery’s Handbook 28th edn. Toolbox, New York: Industrial Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Astakhov, V. (2010). Surface Integrity – Definition and Importance in Functional Performance. In: Davim, J. (eds) Surface Integrity in Machining. Springer, London. https://doi.org/10.1007/978-1-84882-874-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-874-2_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-873-5

  • Online ISBN: 978-1-84882-874-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics