Skip to main content

Independent and Combined Effects of Exercise and Calcium on Bone Structural and Material Properties in Older Adults

  • Chapter
  • First Online:
Nutritional Influences on Bone Health

Abstract

Whole bone strength is determined by the combination of the mass, macro- and micro- structure, and intrinsic material properties of bone. Bone strength decreases with aging because of an imbalance in bone remodeling, so that the balance between the volume of bone resorbed and the volume formed in the basic multicellular unit is negative. This leads to a reduction in bone density and cortical thickness, with accompanying increases in periosteal and endosteal areas. Any factor that influences bone remodeling (disease, drugs, or lifestyle factors) will therefore impact upon whole bone strength. Regular weight-bearing exercise and adequate nutrition, particularly calcium and vitamin D, are two widely recommended strategies that have been shown to independently have positive effects on bone in older adults. However, the mechanism by which exercise and calcium–vitamin D influence bone is different; exercise has a site-specific modifying effect, whereas nutrition has a permissive, generalized effect that act systematically to influence bone remodeling. There is no evidence that excess intakes will result in greater skeletal gains. However, it has been suggested that the beneficial effects of exercise on bone may be dependent on adequate calcium (or nutrient) intake. Early research suggested that there may be a threshold of calcium (∼1,000 mg/day) needed to optimize the skeletal response to loading. However, current data from a limited number of studies using state-of-the-art imaging techniques [(p)QCT] indicate that additional calcium or calcium and vitamin D does not enhance the effects of exercise on bone structural or material properties in older adults with adequate calcium intakes or sufficient circulating vitamin D levels. It is more likely that additional calcium may only promote exercise-induced osteogenesis in older adults in a state of nutritional calcium insufficiency. However, further studies are still needed using three-dimensional bone imaging technology to increase our understanding of the structural based by which exercise and/or nutrition influence whole bone strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouxsein ML. Determinants of skeletal fragility. Best Pract Res Clin Rheumatol. 2005;19:897-911.

    Article  PubMed  Google Scholar 

  2. Griffith JF, Genant HK. Bone mass and architecture determination: state of the art. Best Pract Res Clin Endocrinol Metab. 2008;22:737-764.

    Article  PubMed  Google Scholar 

  3. Seeman E, Delmas PD. Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354:2250-2261.

    Article  PubMed  CAS  Google Scholar 

  4. Daly RM, Bass S, Nowson C. Long-term effects of calcium-vitamin-D3-fortified milk on bone geometry and strength in older men. Bone. 2006;39:946-953.

    Article  PubMed  CAS  Google Scholar 

  5. Daly RM, Brown M, Bass S, et al. Calcium and vitamin D3 fortified milk reduces bone loss at clinically relevant skeletal sites in older men: a 2-year randomised controlled trial. J Bone Miner Res. 2006;31:397-405.

    Google Scholar 

  6. Dawson Hughes B, Harris SS, Krall EA, et al. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Eng J Med. 1997;337:670-676.

    Article  CAS  Google Scholar 

  7. Jackson RD, LaCroix AZ, Gass M, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. 2006;354:669-683.

    Article  PubMed  CAS  Google Scholar 

  8. Peacock M, Liu GD, Carey M, et al. Effect of calcium or 25OH vitamin D-3 dietary supplementation on bone loss at the hip in men and women over the age of 60. J Clin Endocrinol Metab. 2000;85:3011-3019.

    Article  PubMed  CAS  Google Scholar 

  9. Zhu K, Devine A, Dick IM, et al. Effects of calcium and vitamin D supplementation on hip bone mineral density and calcium-related analytes in elderly ambulatory Australian women: a five-year randomized controlled trial. J Clin Endocrinol Metab. 2008;93:743-749.

    Article  PubMed  CAS  Google Scholar 

  10. Seeman E. To stop or not to stop, that is the question. Osteoporos Int. 2009;20:187-195.

    Article  PubMed  Google Scholar 

  11. Chen Z, Beck TJ, Wright NC, et al. The effect of calcium plus vitamin D supplement on hip geometric structures: results from the Women’s Health Initiative CaD Trial. J Bone Miner Res Suppl. 2007;1:S59.

    Google Scholar 

  12. Elders PJ, Lips P, Netelenbos JC, et al. Long-term effect of calcium supplementation on bone loss in perimenopausal women. J Bone Miner Res. 1994;9:963-970.

    Article  PubMed  CAS  Google Scholar 

  13. Ettinger B, Genant HK, Cann CE. Postmenopausal bone loss is prevented by treatment with low-dosage estrogen with calcium. Ann Intern Med. 1987;106:40-45.

    PubMed  CAS  Google Scholar 

  14. Boivin G, Lips P, Ott SM, et al. Contribution of raloxifene and calcium and vitamin D3 supplementation to the increase of the degree of mineralization of bone in postmenopausal women. J Clin Endocrinol Metab. 2003;88:4199-4205.

    Article  PubMed  CAS  Google Scholar 

  15. Fratzl P, Roschger P, Fratzl-Zelman N, et al. Evidence that treatment with risedronate in women with postmenopausal osteoporosis affects bone mineralization and bone volume. Calcif Tissue Int. 2007;81:73-80.

    Article  PubMed  CAS  Google Scholar 

  16. Seeman E. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis. Osteoporos Int. 2003;14(suppl 3):S2-S8.

    PubMed  Google Scholar 

  17. Tang BM, Eslick GD, Nowson C, et al. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet. 2007;370:657-666.

    Article  PubMed  CAS  Google Scholar 

  18. Guadalupe-Grau A, Fuentes T, Guerra B, et al. Exercise and bone mass in adults. Sports Med. 2009;39:439-468.

    Article  PubMed  Google Scholar 

  19. Daly RM, Bass SL. Lifetime sport and leisure activity participation is associated with greater bone size, quality and strength in older men. Osteoporos Int. 2006;17:1258-1267.

    Article  PubMed  CAS  Google Scholar 

  20. Wilks DC, Winwood K, Gilliver SF, et al. Bone mass and geometry of the tibia and the radius of master sprinters, middle and long distance runners, race-walkers and sedentary control participants: a pQCT study. Bone. 2009;45:91-97.

    Article  PubMed  CAS  Google Scholar 

  21. Uusi-Rasi K, Sievanen H, Pasanen M, et al. Associations of calcium intake and physical activity with bone density and size in premenopausal and postmenopausal women: a peripheral quantitative computed tomography study. J Bone Miner Res. 2002;17:544-552.

    Article  PubMed  CAS  Google Scholar 

  22. Uusi-Rasi K, Sievanen H, Vuori I, et al. Associations of physical activity and calcium intake with bone mass and size in healthy women at different ages. J Bone Miner Res. 1998;13:133-142.

    Article  PubMed  CAS  Google Scholar 

  23. Shedd KM, Hanson KB, Alekel DL, et al. Quantifying leisure physical activity and its relation to bone density and strength. Med Sci Sports Exerc. 2007;39:2189-2198.

    Article  PubMed  Google Scholar 

  24. Ma H, Leskinen T, Alen M, et al. Long-term leisure time physical activity and properties of bone: a Twin Study. J Bone Miner Res. 2009. doi:10.1359/JBMR.090309.

    Google Scholar 

  25. Adami S, Gatti D, Braga V, et al. Site-specific effects of strength training on bone structure and geometry of ultradistal radius in postmenopausal women. J Bone Miner Res. 1999;14:120-124.

    Article  PubMed  CAS  Google Scholar 

  26. Uusi-Rasi K, Kannus P, Cheng S, et al. Effect of alendronate and exercise on bone and physical performance of postmenopausal women: a randomized controlled trial. Bone. 2003;33:132-143.

    Article  PubMed  CAS  Google Scholar 

  27. Cheng S, Sipila S, Taaffe DR, et al. Change in bone mass distribution induced by hormone replacement therapy and high-impact physical exercise in post-menopausal women. Bone. 2002;31:126-135.

    Article  PubMed  CAS  Google Scholar 

  28. Karinkanta S, Heinonen A, Sievanen H, et al. A multi-component exercise regimen to prevent functional decline and bone fragility in home-dwelling elderly women: randomized, controlled trial. Osteoporos Int. 2007;18:453-462.

    Article  PubMed  CAS  Google Scholar 

  29. Liu-Ambrose TY, Khan KM, Eng JJ, et al. Both resistance and agility training reduce back pain and improve health-related quality of life in older women with low bone mass. Osteoporos Int. 2005;16:1321-1329.

    Article  PubMed  Google Scholar 

  30. Hamilton CJ, Swan VJ, Jamal SA. The effects of exercise and physical activity participation on bone mass and geometry in postmenopausal women: a systematic review of pQCT studies. Osteoporos Int. 2009. doi:10.1007/s00198-009-0967-1.

    PubMed  Google Scholar 

  31. Specker B, Vukovich M. Evidence for an interaction between exercise and nutrition for improved bone health during growth. In: Daly RM, Petit MA, eds. Optimizing bone mass and strength. The role of physical activity and nutrition during growth. Basel: Karger; 2007.

    Google Scholar 

  32. Specker BL. Evidence for an interaction between calcium intake and physical activity on changes in bone mineral density. J Bone Miner Res. 1996;11:1539-1544.

    Article  PubMed  CAS  Google Scholar 

  33. Kelley GA. Aerobic exercise and bone density at the hip in postmenopausal women: a meta-analysis. Prev Med. 1998;27:798-807.

    Article  PubMed  CAS  Google Scholar 

  34. Devine A, Dhaliwal SS, Dick IM, et al. Physical activity and calcium consumption are important determinants of lower limb bone mass in older women. J Bone Miner Res. 2004;19:1634-1639.

    Article  PubMed  CAS  Google Scholar 

  35. Nurzenski MK, Briffa NK, Price RI, et al. Geometric indices of bone strength are associated with physical activity and dietary calcium intake in healthy older women. J Bone Miner Res. 2007;22:416-424.

    Article  PubMed  Google Scholar 

  36. Uusi-Rasi K, Sievanen H, Pasanen M, et al. Influence of calcium intake and physical activity on proximal femur bone mass and structure among pre- and postmenopausal women. A 10-year prospective study. Calcif Tissue Int. 2008;82:171-181.

    Article  PubMed  CAS  Google Scholar 

  37. Kukuljan S, Nowson CA, Bass SL, et al. Effects of a multi-component exercise program and calcium-vitamin-D3-fortified milk on bone mineral density in older men: a randomised controlled trial. Osteoporos Int. 2009;20:1241-1251.

    Article  PubMed  CAS  Google Scholar 

  38. Lau EM, Woo J, Leung PC, et al. The effects of calcium supplementation and exercise on bone density in elderly Chinese women. Osteoporos Int. 1992;2:168-173.

    Article  PubMed  CAS  Google Scholar 

  39. Nelson ME, Fisher EC, Dilmanian FA, et al. A 1-y walk­ing program and increased dietary calcium in postmeno­pausal women: effects on bone. Am J Clin Nutr. 1991;53:1304-1311.

    PubMed  CAS  Google Scholar 

  40. Kukuljan S, Nowson CA, Bass S, et al. Effects of a targeted bone and muscle loading program on QCT bone geometry and strength, muscle size and function in older men: An 18 month RCT. J Bone Miner Res. 2008;23:S69.

    Google Scholar 

  41. Lanyon CE, Rubin CT, Baust G. Modulation of bone loss during calcium insufficiency by controlled dynamic loading. Calcif Tissue Int. 1986;38:209-216.

    Article  PubMed  CAS  Google Scholar 

  42. Inman CL, Warren GL, Hogan HA, et al. Mechanical loading attenuates bone loss due to immobilization and calcium deficiency. J Appl Physiol. 1999;87:189-195.

    PubMed  CAS  Google Scholar 

  43. Yeh JK, Aloia JF. Effect of physical activity on calciotropic hormones and calcium balance in rats. Am J Physiol. 1990;258:E263-E268.

    PubMed  CAS  Google Scholar 

  44. Zittermann A, Sabatschus O, Jantzen S, et al. Exercise-trained young men have higher calcium absorption rates and plasma calcitriol levels compared with age-matched sedentary controls. Calcif Tissue Int. 2000;67:215-219.

    Article  PubMed  CAS  Google Scholar 

  45. Zittermann A, Sabatschus O, Jantzen S, et al. Evidence for an acute rise of intestinal calcium absorption in response to aerobic exercise. Eur J Nutr. 2002;41:189-196.

    Article  PubMed  CAS  Google Scholar 

  46. Iwamoto J, Takeda T, Ichimura S. Effect of exercise training and detraining on bone mineral density in postmenopausal women with osteoporosis. J Orthop Sci. 2001;6:128-132.

    Article  PubMed  CAS  Google Scholar 

  47. Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec. 2003;275A:1081-1101.

    Article  Google Scholar 

  48. Heaney RP. The importance of calcium intake for lifelong skeletal health. Calcif Tissue Int. 2002;70:70-73.

    Article  PubMed  CAS  Google Scholar 

  49. Frost HM, Schonau E. The “muscle-bone unit” in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab. 2000;13:571-590.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin M. Daly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Daly, R.M., Kukuljan, S. (2011). Independent and Combined Effects of Exercise and Calcium on Bone Structural and Material Properties in Older Adults. In: Burckhardt, P., Dawson-Hughes, B., Weaver, C. (eds) Nutritional Influences on Bone Health. Springer, London. https://doi.org/10.1007/978-1-84882-978-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-978-7_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-977-0

  • Online ISBN: 978-1-84882-978-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics