Skip to main content

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 1974 Accesses

Abstract

To design a cutting tool and thus to assign its proper geometry, select the proper tool material and machining regime, one needs to know the physical essence of a metal cutting process starting with its definition and finishing with the easiest way to accomplish the objective of this process. This chapter provides guidelines to distinguish the metal cutting process commonly referred to as metal cutting among other closely related manufacturing processes and operations. It presents the known results and compares them with those used in other forming processes/operations. It argues that, if the usual notions are used, the metal cutting process does not have any distinguishing features. Analyzing what went wrong with the existing notions in metal cutting, this chapter provides a physically-based definition of the metal cutting process. Using the introduced definition, this chapter for the first time describes explicitly the role of cutting tool geometry in the metal cutting process that sets the stage for better understanding of other chapters in this book. Because in the development and implementation of any cutting tool experiment remains essential, the complete hierarchical system of tool testing is also discussed and the most useful similarity numbers used in testing are introduced and explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gorczyca FY (1987) Application of metal cutting theory. Industrial Press, London

    Google Scholar 

  2. DeGarmo EP, Black JT, Kohser RA (2007) Materials and processes in manufacturing. 10th Ed., Wiley, New York

    Google Scholar 

  3. Shaw MC (2004) Metal cutting principles. 2nd Edition, University Press, Oxford

    Google Scholar 

  4. AdvantEdge 4.6. (2004) Available from: http://www.thirdwavesys.com/

    Google Scholar 

  5. Kalpakjian S, Schmid SR (2001) Manufacturing engineering and technology. 4th ed, Prentice−Hall, New Jersey

    Google Scholar 

  6. Shaw MC (1984) Metal cutting principles. University Press, Oxford

    Google Scholar 

  7. Stephenson DA, Agapiou JS (1996) Metal cutting theory and practice. Marcel Dekker, New York

    Google Scholar 

  8. Boothroyd G, Knight WA (2006) Fundamentals of machining and machine tools, Third ed. CRC, Boca Raton

    Google Scholar 

  9. Time I (1870) Resistance of metals and wood to cutting (in Russian). Dermacow, St.Petersburg, Russia

    Google Scholar 

  10. Zvorykin KA. (1896) On the force and energy needed to separate the chip from the workpiece (in Russian). Tekhicheskii Sbornik i Vestnic Promyslinosty, 123: 57−96

    Google Scholar 

  11. Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J. of App. Phys. 16: 267−275

    Article  Google Scholar 

  12. Ernst H, Merchant ME (1941) Chip formation, friction and high quality machined surfaces. Surface Treatment of Metals, ASM 29: 299−378

    Google Scholar 

  13. Astakhov VP (1999) A treatise on material characterization in the metal cutting process. Part 1: A novel approach and experimental verification. J. Mat. Proc. Tech 96(1−3): 22−33

    Article  Google Scholar 

  14. Astakhov, V.P. (1998/1999) Metal cutting mechanics. CRC, Boca Raton

    Google Scholar 

  15. Vidosic JP (1964) Metal machining and forming technology. Roland Press, New York

    Google Scholar 

  16. Dieter G (1976) Mechanical metallurgy. 2 ed. McGraw−Hill, New York

    Google Scholar 

  17. Reuleaux F (1900) Über den taylor whiteschen werkzeugstahl verein sur berforderung des gewerbefleissen in preussen. Sitzungsberichete 79(1): 179−220

    Google Scholar 

  18. (1924) Report of the present status and future problems in the art of cutting and forming metals. ASME Committee Report. Mechanical Engineering 46: 20−30

    Google Scholar 

  19. Mallock A (1881−1882) The action of cutting tools. Proc. of the Royal Soc. of London 33:127

    Google Scholar 

  20. Kick F (1901) Zur folge der wirkungsweise des taylor−white and der bohler−rapid−stahles. Baumaterialkunde 6: 227

    Google Scholar 

  21. Byers JP (2006) Metalworking fluids, CRC, Boca Raton

    Google Scholar 

  22. Finnie I (1956) Review of the metal−cutting analysis of the past hundred years. Mech. Engr. 78:715−721

    Google Scholar 

  23. Hill R (1950) The mathematical theory of plasticity, University Press, London

    MATH  Google Scholar 

  24. Hill R (1954) The mechanism of machining: a new approach. J. of the Mech. and Phys. of Solids 3:47−53

    Article  Google Scholar 

  25. Astakhov VP (1999) A treatise on material characterization in the metal cutting process. Part 2: cutting as the fracture of workpiece material. J. Mat. Proc. Tech. 96(1−3):34−41

    Article  Google Scholar 

  26. Astakhov VP (2005) On the inadequacy of the single-shear plane model of chip formation. Int. J. Mech. Science 47:1649−1672

    Article  Google Scholar 

  27. Merchant ME (1944) Basic mechanics of metal cutting process. J. of App. Mech. 11: A168−A175

    Google Scholar 

  28. Merchant ME (1945) Mechanics of the metal cutting process. II. Plasticity conditions in orthogonal cutting. J. of App Physics 16:318−324

    Article  Google Scholar 

  29. Astakhov VP (2006) Tribology of metal cutting. Elsevier, London

    Google Scholar 

  30. American National Standard "Tool life testing with single-point turning tools" ANSI/ASME B94.55M 1985. 1985, ASME: New York

    Google Scholar 

  31. (1993) Tool-life testing with single-point turning tools. ISO Standard 3685

    Google Scholar 

  32. Zorev NN (1966) Metal cutting mechanics. Pergamon Press, Oxford

    Google Scholar 

  33. Piispanen V (1937) Lastunmuodostumisen teoriaa. Teknillinen Aikakauslehti 27: 315−322

    Google Scholar 

  34. Carroll JT, Strenkowski JS (1988) Finite element models of orthogonal cutting with application to single point diamond turning. Int. J. of Mech. Sciences 30:899−920

    Article  Google Scholar 

  35. Komvopoulos K, Erpenbeck SA (1991) Finite element modeling of orthogonal metal cutting. ASME J. of Eng. for Ind. 113(3):253−267

    Google Scholar 

  36. Zhang B, Bagchi A (1994) Finite element simulation of chip formation and comparison with machining experiment. ASME J. of Eng. for Ind. 116(3): 289−297

    Article  Google Scholar 

  37. Shih AJ (1995) Finite element simulation of orthogonal metal cutting. ASME J. of Eng. for Ind.117(1):84−93

    Article  Google Scholar 

  38. Hashemi J, Tseng, AA, Chou PC (1994) Finite element modeling of segmental chip formation in high-speed orthogonal cutting. J. of Materials Engineering and Performance 3(5):712−721

    Article  Google Scholar 

  39. Lin, ZC, Lin, SY (1992) A coupled finite element model of thermo-elastic-plastic large deformation for orthogonal cutting. J. of Engineering Materials and Technology 114:218−226

    Article  Google Scholar 

  40. Mackerle J. (2001) 2D and 3D finite element meshing and remeshing: A bibliography (1990−2001). Engineering Computations: Int. J. for Computer-Aided Engineering 18(8):1108−1197

    Article  MATH  Google Scholar 

  41. Ernst H (1938) Physics of metal cutting. The Cincinnati Milling Machine Co., Cincinnati OH, USA

    Google Scholar 

  42. Blake A (1985) Handbook of mechanics, materials, and structures. Wiley New York

    MATH  Google Scholar 

  43. Hamrock BJ, Schmid SR, Jacobson BO (2005) Fundamentals of machine elements. McGraw−Hill, Boston

    Google Scholar 

  44. Atkins AG, Mai YW (1985) elastic and plastic fracture: metals, polymers, ceramics, composites, biological materials. Wiley, New York

    Google Scholar 

  45. Atkins AG (2003) Modelling metal cutting using modern ductile fracture mechanics: qualitative explanations for some longstanding problems. Int. J. of Mech. Science 45:373−396

    Article  Google Scholar 

  46. Sampath WS, Shaw MS (1983) Fracture on the shear plane in continuous cutting. In: Proc. 11th NAMRI Conference, Dearborn, MI 1983

    Google Scholar 

  47. Itava K, Ueda K (1976) The significance of the dynamic crack behavior in chip formation. Annals of the CIRP 25:65−70

    Google Scholar 

  48. Didjanin L, Kovac P (1997) Fracture mechanisms in chip formation processes. Materials Science and Technology 13:439−444

    Google Scholar 

  49. Trent EM, Wright PK (2000) Metal cutting, Fourth Edition. Butterworth−Heineman, Woburn, MA

    Google Scholar 

  50. Strength vs. Hardness of Tool Steels (2007), Bulletin 112. Latrob Speciality Steel Company: Latrobe, PA

    Google Scholar 

  51. Oxley PLB (1989) Mechanics of machining: an analytical approach to assessing machinability. Wiley, New York

    Google Scholar 

  52. Al-Momani E, Rawabdeh I (2008) An application of finite element method and design of experiment in the optimization of sheet metal blanking process. Jordan Journal of Mechanical and Industrial Engineering 2(1):53−63

    Google Scholar 

  53. Astakhov VP, Outeiro JC (2008) Metal cutting mechanics, finite element modeling. In Davim PJ(ed) Machining: fundamentals and recent advances, Springer: London

    Google Scholar 

  54. Tarkany N (2004) Improving perforating die performance: the effect of stress, clearance and material. The Fabricator, 2004, 2−7

    Google Scholar 

  55. Eleftherion E, Bates CE (1999) Effect of inoculation on machinability of grey cast iron. ASF Transactions 122:659−669

    Google Scholar 

  56. Garry JRC, Wright IP (2000) The cutting strength of cryogenic water. http://www.lpi.usra.edu/meetings/lpsc2000/pdf/1982.pdf.

    Google Scholar 

  57. Muvdi BB, Al-Khafaji AW, McNabb JW (1997) Dynamics for engineers: with 1118 illustrations. Springer, New York

    Google Scholar 

  58. Rubenstein SA (1983) A note concerning the inadmissibility of applying of minimum work principle to metal cutting. ASME J. of Eng. for Ind. 105:294−296

    Article  Google Scholar 

  59. Dewhurst W (1978) On the non-uniqueness of the machining process. Proc. of the Royal Society of London, A 360:587−609

    Article  Google Scholar 

  60. Shaw MC (2008) Metal cutting principles. Science Publications. Oxford.

    Google Scholar 

  61. Shaw MC (1988) Metal removal. In: Booser ER (ed) CRC handbook of lubrication: theory and practice of tribology, CRC Boca Raton

    Google Scholar 

  62. Trent EM (1988) Metal cutting and the tribology of seizure. Part1. Seizure in metal cutting. Wear 128:29−37

    Article  Google Scholar 

  63. Trent EM (1991) Metal cutting. 3rd ed. London, Butterworth Heinemann

    Google Scholar 

  64. Outeiro JC (2003) Application of recent metal cutting approaches to the study of the machining residual stresses Dissertation. University of Coimbra

    Google Scholar 

  65. Astakhov VP (2004), Tribology of metal cutting, In: Toten G, Lieang H (ed) Mechanical tribology. material characterization and application. MarcelDekker, New York

    Google Scholar 

  66. Astakhov VP, Shvets S. (2004) The assessment of plastic deformation in metal cutting. J. of Mat. Proc. Tech. 146:193−202

    Article  Google Scholar 

  67. Johnson GR, Cook WH (1983) A constructive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proc. of the 7th International Symposium on Ballistics. 1983

    Google Scholar 

  68. Pugh HLD (1958) Mechanics of metal cutting process. In: Proc. IME Conf. Tech. Eng. Manufacture, London

    Google Scholar 

  69. Chisholm AWJ (1958). A review of some basic research on the machining of metals. n: Proc. IME Conf. Tech. Eng. Manufacture, London.

    Google Scholar 

  70. Bailey JA, Boothrouyd G (1969) Critical review of some previous work on the mechanics of the metal-cutting process. ASME J. of Eng. for Ind. 90: 54−62

    Google Scholar 

  71. Zorev NN (1958) Results of work in the field of the mechanics of the metal cutting process. In: Proc. IME Conf. Tech. Eng. Manufacture, London.

    Google Scholar 

  72. Hill R (1954) The mechanics of machining: a new approach. Journal of the Mechanics and Physics of Solids 3:47−53

    Article  Google Scholar 

  73. Creveling JH, Jordon TF, Thomsen EG. (1958) Some studies on angle relationship in metal cutting. ASME Journal of Applied Mechanics 79:127−138

    Google Scholar 

  74. Atkins AG (2003) Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. International Journal of Mechanical Science 43:373−396

    Article  Google Scholar 

  75. Childs THC, Maekawa K, Obikawa T, Yamane Y (2000) Metal machining. theory and application. Arnold, London

    Google Scholar 

  76. Usui E (1988) Progress of "predictive" theories in metal cutting. JSME International Journal 31:363−369

    Google Scholar 

  77. Astakhov VP, Shvets SV (1998) A system concept in metal cutting. J. Mat. Proc. Tech. 79(1−3):189−199

    Article  Google Scholar 

  78. Astakhov VP, Xiao XR (2008) A methodology for practical cutting force evaluation based on the energy spent in the cutting system. Machining Science and Technology, An International Journal 12(3):325−347

    Article  Google Scholar 

  79. Johnson W, Mellor PB (1973) Engineering plasticity. Inglaterra London

    Google Scholar 

  80. Komarovsky AA, Astakhov VP (2002) Physics of strength and fracture control: fundamentals of the adaptation of engineering materials and structures. CRC, Boca Raton

    Book  Google Scholar 

  81. Astakhov VP, Davim PJ (2008) Tools (geometry and material) and tool wear. In Davim PJ(ed) Machining: fundamentals and recent advances, Springer: London

    Google Scholar 

  82. Makarow AD (1976) Optimization of cutting processes (in Russian), Mashinostroenie, Moscow

    Google Scholar 

  83. Davis JR (2004) Tensile testing. 2nd ed. ASTM, Materials Park, OH

    Google Scholar 

  84. Altintas Y (2000) Manufacturing automation. metal cutting mechanics, machine tool vibrations, and CNC design. University Press, London

    Google Scholar 

  85. Slater RAC (1977) Engineering plasticity: theory and application to metal forming processes. Macmillan, London

    Google Scholar 

  86. Saletri R.A, Sisler DE (1992) Cutting tool geometries: a user perspective. SME Paper MR92−360:1−10

    Google Scholar 

  87. Ezugwu EO (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. Int. J. of Mach. Tools and Manufact., 40:1353−1367

    Article  Google Scholar 

  88. Qi Y, Hector LG (2003) Hydrogen effect on adhesion and adhesive transfer at aluminum/diamond interfaces. Physical Review B 68:201403−1 − 201403−4

    Google Scholar 

  89. Qi Y, Hector LG (2004) Adhesion and adhesive transfer at aluminum/diamond interfaces: A first-principles study. Physical Review B 69: 235401−1 − 235401−13

    Article  Google Scholar 

  90. Qi Y, Hector LG, Ooi N, Adams JB (2005) A first principles study of adhesion and adhesive transfer at AL(111)/graphite(0001). Surface Engineering 581:155−168

    Google Scholar 

  91. Gelin JC, Oudin J, Ravalard Y (1981) Determination of the flow stress-strain curves for metals from axisymmetric upsetting. J. of Mechanical Working Technology 5(3−4):297−308

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2010). What Does It Mean “Metal Cutting”?. In: Geometry of Single-point Turning Tools and Drills. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-84996-053-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-053-3_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-052-6

  • Online ISBN: 978-1-84996-053-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics