Skip to main content

Visual Servoing for Beating Heart Surgery

  • Chapter
Visual Servoing via Advanced Numerical Methods

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 401))

Abstract

Off-pump coronary artery bypass grafting (CABG) is still a technically challenging procedure. The existing mechanical stabilizers used for local suppression of the heart excursion have demonstrated significant residual motion, which could lead to a lack of accuracy in the surgical task, particularly in a minimally invasive surgery (MIS) context. Robots can help the surgeon by actively compensating for the heart motion using visual servoing. Various sensors like endoscopic camera, ultrasound imaging or even magnetic resonance imaging (MRI) can be used to provide the feedback of the visual loop. Advanced control approaches like predictive, repetitive or robust control can enhance the compensation accuracy. They rely on a model that uses physiological inputs to predict the motion of the myocardium in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ATLAS: Atlas, http://math-atlas.sourceforge.net/

  2. Bachta, W., Renaud, P., Cuvillon, L., Laroche, E., Forgione, A., Gangloff, J.: Motion prediction for computer-assisted beating heart surgery. IEEE Transactions on Biomedical Engineering (to appear)

    Google Scholar 

  3. Bachta, W., Renaud, P., Laroche, E., Forgione, A., Gangloff, J.: Cardiolock: an active cardiac stabilizer, first in vivo experiments using a new robotized device. Computer Aided Surgery 13(5), 243–254 (2008)

    Google Scholar 

  4. Bachta, W., Renaud, P., Laroche, E., Gangloff, J.: Cardiolock2: Parallel singularities for the design of an active heart stabilizer. In: IEEE International Conference on Robotics and Automation (2009)

    Google Scholar 

  5. Baker, S., Matthews, I.: Lucas-kanade 20 years on: A unifying framework. Int. J. of Computer Vision 56(3) (2004)

    Google Scholar 

  6. Bebek, O., Cavusoglu, M.: Intelligent control algorithms for robotic-assisted beating heart surgery. IEEE Transactions on Robotics 23(3), 468–480 (2007)

    Article  Google Scholar 

  7. Benhimane, S., Malis, E.: Homography-based 2D visual tracking and servoing. Int. J. Robotics Research 26(7), 661–676 (2007)

    Article  Google Scholar 

  8. Boyd, W.D., Desai, N.D., Rizzo, D.F.D., Novick, R.J., McKenzie, F.N., Menkis, A.H.: Off-pump surgery decreases post-operative complications and resource utilization in the elderly. Annals of Thoracic Surgery 68, 1490–1493 (1999)

    Article  Google Scholar 

  9. Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (1999)

    Google Scholar 

  10. Cattin, P., Dave, H., Grunenfelder, J., Szekely, G., Turina, M., Zund, G.: Trajectory of coronary motion and its significance in robotic motion cancellation. European Journal of Cardio-thoracic Surgery 25(5), 786–790 (2004)

    Article  Google Scholar 

  11. Choi, D., Riviere, C.: Flexure-based manipulator for active handhled microsurgical instrument. In: 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2005)

    Google Scholar 

  12. Crick, S.J., Sheppard, M.N., Ho, S.Y., Gebstein, L., Anderson, R.H.: Anatomy of the pig heart: comparisons with normal human cardiac structure. Journal of Anatomy 193(1), 105 (1998)

    Article  Google Scholar 

  13. Cuvillon, L., Gangloff, J., De Mathelin, M., Forgione, A.: Towards robotized beating heart TECABG: assessment of the heart dynamics using high-speed vision. Computer aided surgery 11(5), 267–277 (2006)

    Article  Google Scholar 

  14. Dario, P., Hannaford, B., Menciassi, A.: Smart surgical tools and augmenting devices. IEEE Transactions on Robotics and Automation 19(5), 782–792 (2003)

    Article  Google Scholar 

  15. Doyle, J., Glover, K., Khargonekar, P., Francis, B.: State-space solutions to standard H2 and H ∞  control problems. IEEE Transactions on Automatic Control 34(8), 831–847 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Duchemin, G., Poignet, P., Dombre, E., Pierrot, F.: Medically safe and sound [human-friendly robot dependability]. IEEE Robotics and Automation Magazine 11(2), 46–55 (2004)

    Article  Google Scholar 

  17. Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Transactions on Robotics and Automation 8(3), 313–326 (1992)

    Article  Google Scholar 

  18. Falk, V., Walther, T., Stein, H., Jacobs, S., Walther, C., Rastan, A., Wimmer-Greinecker, G., Mohr, F.: Facilated endoscopic beating heart coronary artery bypass grafting using a magnetic coupling device. The Journal of Thoracic and Cardiovascular Surgery 126(5), 1575–1579 (2003)

    Article  Google Scholar 

  19. Ginhoux, R., Gangloff, J., de Mathelin, M., Soler, L., Sanchez, M., Marescaux, J.: Active filtering of physiological motion in robotized surgery using predictive control. IEEE Transactions on Robotics 21(1), 67–79 (2005)

    Article  Google Scholar 

  20. Google-perftools, http://code.google.com/p/google-perftools/

  21. Gummert, J., Opfermann, U., Jacobs, S., Walther, T., Kempfert, J., Mohr, F., Falk, V.: Anastomotic devices for coronary artery bypass grafting: technological options and potential pitfalls. Computers in Biology and Medicine 37, 1384–1393 (2007)

    Article  Google Scholar 

  22. Hager, G., Belhumeur, P.: Efficient region tracking with parametric models of geometry and illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(10), 1125–1139 (1998)

    Article  Google Scholar 

  23. IPP: Ipp, http://software.intel.com/en-us/intel-ipp/

  24. Jin, H., Favaro, P., Soatto, S.: Real-time feature tracking and outlier rejection with changes in illumination. In: Proc. IEEE Int. Conf. on Computer Vision, vol. 1, pp. 684–689 (2001)

    Google Scholar 

  25. Jurie, F., Dhome, M.: Hyperplane approximation for template matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 996–1000 (2002)

    Article  Google Scholar 

  26. Kettler, D., Plowes, R., Novotny, P., Vasilyev, N., del Nido, P., Howe, R.: An active motion compensation instrument for beating heart mitral valve surgery. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2007. IROS 2007, pp. 1290–1295 (2007)

    Google Scholar 

  27. Lemma, M., Mangini, A., Redaelli, A., Acocella, F.: Do cardiac stabilizers really stabilize? experimental quantitative analysis of mechanical stabilization. Interactive Cardiovascular and Thoracic Surgery (2005)

    Google Scholar 

  28. Loisance, D., Nakashima, K., Kirsch, M.: Computer-assisted coronary surgery: lessons from an initial experience. Interactive Cardiovascular and Thoracic Surgery 4, 398–401 (2005)

    Article  Google Scholar 

  29. Malis, E.: An efficient unified approach to direct visual tracking of rigid and deformable surfaces. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2729–2734 (2007)

    Google Scholar 

  30. OpenCV: http://sourceforge.net/projects/opencvlibrary/

  31. Nakamura, Y., Kishi, K., Kawakami, H.: Heartbeat synchronization for robotic cardiac surgery. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 2014–2019 (2001)

    Google Scholar 

  32. Noce, A., Triboulet, J., Poignet., P.: Efficient tracking of the heart using texture. In: Proceedings of IEEE International Conference of the Engineering in Medicine and Biology Society (EMBS 2007), Lyon, France, vol. 1, pp. 4480–4483 (2007)

    Google Scholar 

  33. OECD: Health data: Statistics and indicators for 30 countries, http://www.oecd.org/health/healthdata

  34. Ortmaier, T.: Motion compensation in minimally invasive robotic surgery. Ph.D. thesis, Technischen Universität München (2002)

    Google Scholar 

  35. Patronik, N., Zenati, M., Riviere, C.: Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart. Computer Aided Surgery 10(5), 225–232 (2005)

    Article  Google Scholar 

  36. Ranftl, A., Cuvillon, L., Gangloff, J., Sloten, J.: High speed visual servoing with ultrasonic motors. In: IEEE Int. Conf. on Robotics and Automation, pp. 4472–4477 (2007)

    Google Scholar 

  37. Salcudean, S., Lichtenstein, S., Trejos, A., Sassani F.and Gihuly, T.: Moving tracking platform for relative motion cancellation for surgery. US Patent 6368332B1, April 9 (2002)

    Google Scholar 

  38. Stoyanov, D., Mylonas, G.P., Deligianni, F., Darzi, A.: Soft-tissue motion tracking and structure estimation for robotic assisted MIS procedures. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 139–146. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  39. Sugimoto, S., Okutomi, M.: A direct and efficient method for piecewise-planar surface reconstruction from stereo images. In: Proc. IEEE Society Conf. on Comptuer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  40. Takata, U.: Thesis. Ph.D. thesis, Graduate School of Frontier Sciences, The University of Tokyo (2009)

    Google Scholar 

  41. Thakral, A., Wallace, J., Tolmin, D., Seth, N., Thakor, N.: Surgical motion adaptive robotic technology (S.M.A.R.T): Taking the motion out of physiological motion. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 317–325. Springer, Heidelberg (2001)

    Google Scholar 

  42. Trejos, A., Salcudean, S., Sassani, F., Lichtenstein, S.: On the feasibility of a moving support for surgery on the beating heart. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1088–1097. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  43. Van Dijk, D., Jansen, E., Hijman, R.E.A.: Cognitive outcome after off-pump and on-pump coronary artery bypass graft surgery. Journal of the American Medical Association 287(11), 1405–1412 (2002)

    Article  Google Scholar 

  44. Yuen, S., Novotny, P., Howe, R.: Quasiperiodic predictive filtering for robot-assisted beating heart surgery. In: IEEE International Conference on Robotics and Automation, pp. 3875–3880 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Bachta, W., Renaud, P., Malis, E., Hashimoto, K., Gangloff, J. (2010). Visual Servoing for Beating Heart Surgery. In: Chesi, G., Hashimoto, K. (eds) Visual Servoing via Advanced Numerical Methods. Lecture Notes in Control and Information Sciences, vol 401. Springer, London. https://doi.org/10.1007/978-1-84996-089-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-089-2_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-088-5

  • Online ISBN: 978-1-84996-089-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics