Skip to main content
  • 458 Accesses

Abstrait

Les lymphocytes T CD4+ et CD8+ jouent un grand rôle dans la régression spontanée des lésions à HPV. Les lymphocytes T CD4+ sont essentiels pour cette régression et ne sont plus détectables lorsque les lésions évoluent vers des formes agressives.

L’immunité vis-à-vis d’HPV 16 est au moins aussi efficace que celle dirigée contre les HPV non oncogènes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Frazer IH, Thomas R, Zhou J et al. (1999). Potential strategies utilised by papillomavirus to evade host immunity. Immunol Rev 168: 131–42

    Article  PubMed  CAS  Google Scholar 

  2. Price AA, Cumberbatch M, Kimber I et al. (1997) Alpha 6 integrins are required for Langerhans cell migration. Adv Exp Med Biol 417: 129–32

    PubMed  CAS  Google Scholar 

  3. Da Silva DM, Velders MP, Nieland JD et al. (2001) Physical interaction of human papillomavirus virus-like particles with immune cells. Int Immunol 13: 633–41

    Article  PubMed  Google Scholar 

  4. Lenz P, Day PM, Pang YY et al. (2001) Papillomavirus-like particles induce acute activation of dendritic cells. J Immunol 166: 5346–55

    PubMed  CAS  Google Scholar 

  5. Charbonnier AS, Kohrgruber N, Kriehuber E et al. (1999) Macrophage inflammatory protein 3alpha is involved in the constitutive trafficking of epidermal langerhans cells. J Exp Med 190: 1755–68

    Article  PubMed  CAS  Google Scholar 

  6. Woodman CB, Collins S, Winter H et al. (2001) Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study. Lancet 357: 1831–6

    Article  PubMed  CAS  Google Scholar 

  7. Richardson H, Franco E, Pintos J et al. 2000. Determinants of low-risk and high-risk cervical human papillomavirus infections in Montreal University students. Sex Transm Dis 27: 79–86

    Article  PubMed  CAS  Google Scholar 

  8. Boulanger JC, Sevestre H, Bauville E et al. (2004) [Epidemiology of HPV infection]. Gynecol Obstet Fertil 32: 218–23

    Article  PubMed  Google Scholar 

  9. Clavel C, Masure M, Bory JP et al. (2001) Human papillomavirus testing in primary screening for the detection of high-grade cervical lesions: a study of 7932 women. Br J Cancer 84: 1616–23

    Article  PubMed  CAS  Google Scholar 

  10. Moscicki AB, Shiboski S, Hills NK et al. (2004) Regression of low-grade squamous intra-epithelial lesions in young women. Lancet 364: 1678–83

    Article  PubMed  Google Scholar 

  11. Coleman N, Birley HD, Renton AM et al. (1994) Immunological events in regressing genital warts. Am J Clin Pathol 102: 768–74

    PubMed  CAS  Google Scholar 

  12. Tay SK, Jenkins D, Maddox P et al. (1987) Lymphocyte phenotypes in cervical intraepithelial neoplasia and human papillomavirus infection. Br J Obstet Gynaecol 94: 16–21

    PubMed  CAS  Google Scholar 

  13. Monnier-Benoit S, Mauny F, Riethmuller D et al. (2006) Immunohistochemical analysis of CD4+ and CD8+ T-cell subsets in high risk human papillomavirus-associated premalignant and malignant lesions of the uterine cervix. Gynecol Oncol 102: 22–31

    Article  PubMed  Google Scholar 

  14. Ferguson A, Moore M, Fox H (1985) Expression of MHC products and leucocyte differentiation antigens in gynaecological neoplasms: an immunohistological analysis of the tumour cells and infiltrating leucocytes. Br J Cancer 52: 551–63

    PubMed  CAS  Google Scholar 

  15. Dietl JA, Horny HP, Buchholz F (1991) Lymphoreticular cells in invasive carcinoma of the uterine cervix: an immunohistological study. Int J Gynaecol Obstet 34: 179–82

    Article  PubMed  CAS  Google Scholar 

  16. Ghosh AK, Moore M (1992) Tumour-infiltrating lymphocytes in cervical carcinoma. Eur J Cancer 28A: 1910–6

    Article  PubMed  CAS  Google Scholar 

  17. Bontkes HJ, de Gruijl TD, Walboomers JM et al. (1997) Assessment of cytotoxic T-lymphocyte phenotype using the specific markers granzyme B and TIA-1 in cervical neoplastic lesions. Br J Cancer 76: 1353–60

    PubMed  CAS  Google Scholar 

  18. Evans EM, Man S, Evans AS et al. (1997) Infiltration of cervical cancer tissue with human papillomavirus-specific cytotoxic T-lymphocytes. Cancer Res 57: 2943–50

    PubMed  CAS  Google Scholar 

  19. Daneri-Navarro A, Del Toro-Arreola S, Sanchez-Hernandez PE et al. (2005) Immunosuppressive activity of proteases in cervical carcinoma. Gynecol Oncol 98: 111–7

    Article  PubMed  CAS  Google Scholar 

  20. Hong K, Greer CE, Ketter N et al. (1997) Isolation and characterization of human papillomavirus type 6-specific T cells infiltrating genital warts. J Virol 71: 6427–32

    PubMed  CAS  Google Scholar 

  21. Arany I Tyring SK (1996) Status of local cellular immunity in interferon-responsive and-nonresponsive human papillomavirus-associated lesions. Sex Transm Dis 23: 475–80

    Article  PubMed  CAS  Google Scholar 

  22. Arany I Tyring SK (1996) Activation of local cell-mediated immunity in interferon-responsive patients with human papillomavirus-associated lesions. J Interferon Cytokine Res 16: 453–60

    PubMed  CAS  Google Scholar 

  23. Hohn H, Pilch H, Gunzel S et al. (2000) Human papillomavirus type 33 E7 peptides presented by HLA-DR*0402 to tumor-infiltrating T cells in cervical cancer. J Virol 74: 6632–6

    Article  PubMed  CAS  Google Scholar 

  24. Hohn H, Pilch H, Gunzel S et al. (1999) CD4+ tumor-infiltrating lymphocytes in cervical cancer recognize HLA-DR-restricted peptides provided by human papillomavirus-E7. J Immunol 163: 5715–22

    PubMed  CAS  Google Scholar 

  25. Giannini SL, Hubert P, Doyen J et al. (2002) Influence of the mucosal epithelium microenvironment on Langerhans cells: implications for the development of squamous intraepithelial lesions of the cervix. Int J Cancer 97: 654–9

    Article  PubMed  CAS  Google Scholar 

  26. Hazelbag S, Kenter GG, Gorter A et al. (2004) Prognostic relevance of TGF-beta1 and PAI-1 in cervical cancer. Int J Cancer 112: 1020–8

    Article  PubMed  CAS  Google Scholar 

  27. Youde SJ, Dunbar PR, Evans EM et al. (2000) Use of fluorogenic histocompatibility leukocyte antigen-A*0201/HPV 16 E7 peptide complexes to isolate rare human cytotoxic T-lymphocyte-recognizing endogenous human papillomavirus antigens. Cancer Res 60: 365–71

    PubMed  CAS  Google Scholar 

  28. Nakagawa M, Stites DP, Farhat S et al. (1997) Cytotoxic T lymphocyte responses to E6 and E7 proteins of human papillomavirus type 16: relationship to cervical intraepithelial neoplasia. J Infect Dis 175: 927–31

    PubMed  CAS  Google Scholar 

  29. Evans C, Bauer S, Grubert T et al. (1996) HLA-A2-restricted peripheral blood cytolytic T lymphocyte response to HPV type 16 proteins E6 and E7 from patients with neoplastic cervical lesions. Cancer Immunol Immunother 42: 151–60

    Article  PubMed  CAS  Google Scholar 

  30. Nimako M, Fiander AN, Wilkinson GW et al. (1997) Human papillomavirus-specific cytotoxic T lymphocytes in patients with cervical intraepithelial neoplasia grade III. Cancer Res 57: 4855–61

    PubMed  CAS  Google Scholar 

  31. Ressing ME, Sette A, Brandt RM et al. (1995) Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides. J Immunol 154: 5934–43

    PubMed  CAS  Google Scholar 

  32. Rangel R, Rocha L, Ramirez JL et al. (1995) Generation of memory CD4+, CD8+, CD45RO+ and CD16-lymphocytes activated with IL-2, INF-gamma, and TNF-alpha with specific cytotoxicity against autologous cervical cancer cells in a mixed leukocyte-tumour cell culture. Eur Cytokine Netw 6: 195–202

    PubMed  CAS  Google Scholar 

  33. Valdespino V, Gorodezky C, Ortiz V et al. (2005) HPV16-specific cytotoxic T lymphocyte responses are detected in all HPV16-positive cervical cancer patients. Gynecol Oncol 96: 92–102

    Article  PubMed  Google Scholar 

  34. Kadish AS, Ho GY, Burk RD et al. (1997) Lymphoproliferative responses to human papillomavirus (HPV) type 16 proteins E6 and E7: outcome of HPV infection and associated neoplasia. J Natl Cancer Inst 89: 1285–93

    Article  PubMed  CAS  Google Scholar 

  35. Tsukui T, Hildesheim A, Schiffman MH et al. (1996) Interleukin 2 production in vitro by peripheral lymphocytes in response to human papillomavirus-derived peptides: correlation with cervical pathology. Cancer Res 56: 3967–74

    PubMed  CAS  Google Scholar 

  36. Luxton JC, Rowe AJ, Cridland JC et al. (1996) Proliferative T cell responses to the human papillomavirus type 16 E7 protein in women with cervical dysplasia and cervical carcinoma and in healthy individuals. J Gen Virol 77 (Pt 7): 1585–93

    Article  PubMed  CAS  Google Scholar 

  37. de Gruijl TD, Bontkes HJ, Walboomers JM et al. (1998) Differential T helper cell responses to human papillomavirus type 16 E7 related to viral clearance or persistence in patients with cervical neoplasia: a longitudinal study. Cancer Res 58: 1700–6

    PubMed  Google Scholar 

  38. de Jong A, van der Burg SH, Kwappenberg KM et al. (2002) Frequent detection of human papillomavirus 16 E2-specific T-helper immunity in healthy subjects. Cancer Res 62: 472–9

    PubMed  Google Scholar 

  39. Welters MJ, de Jong A, van den Eeden SJ et al. (2003). Frequent display of human papillomavirus type 16 E6-specific memory t-Helper cells in the healthy population as witness of previous viral encounter. Cancer Res 63: 636–41

    PubMed  CAS  Google Scholar 

  40. Hopfl R, Heim K, Christensen N et al. (2000) Spontaneous regression of CIN and delayed-type hypersensitivity to HPV-16 oncoprotein E7. Lancet 356: 1985–6

    Article  PubMed  CAS  Google Scholar 

  41. Cusini M, Salmaso F, Zerboni R et al. (2004) 5% Imiquimod cream for external anogenital warts in HIV-infected patients under HAART therapy. Int J STD AIDS 15: 17–20

    Article  PubMed  CAS  Google Scholar 

  42. Le T, Hicks W, Menard C et al. (2006) Preliminary results of 5% imiquimod cream in the primary treatment of vulva intraepithelial neoplasia grade 2/3. Am J Obstet Gynecol 194: 377–80

    Article  PubMed  CAS  Google Scholar 

  43. Wendling J, Saiag P, Berville-Levy S et al. (2004) Treatment of undifferentiated vulvar intraepithelial neoplasia with 5% imiquimod cream: a prospective study of 12 cases. Arch Dermatol 140: 1220–4

    Article  PubMed  CAS  Google Scholar 

  44. Marchitelli C, Secco G, Perrotta M et al. (2004) Treatment of bowenoid and basaloid vulvar intraepithelial neoplasia 2/3 with imiquimod 5% cream. J Reprod Med 49: 876–82

    PubMed  Google Scholar 

  45. Todd RW, Etherington IJ, Luesley DM (2002) The effects of 5% imiquimod cream on high-grade vulval intraepithelial neoplasia. Gynecol Oncol 85: 67–70

    Article  PubMed  CAS  Google Scholar 

  46. Jayne CJ, Kaufman RH (2002) Treatment of vulvar intraepithelial neoplasia 2/3 with imiquimod. J Reprod Med 47: 395–8

    PubMed  Google Scholar 

  47. van Seters M, Fons Gvan Beurden M (2002) Imiquimod in the treatment of multifocal vulvar intraepithelial neoplasia 2/3. Results of a pilot study. J Reprod Med 47: 701–5

    PubMed  Google Scholar 

  48. Fausch SC, Da Silva DM, Rudolf MP et al. (2002) Human papillomavirus virus-like particles do not activate Langerhans cells: a possible immune escape mechanism used by human papillomaviruses. J Immunol 169: 3242–9

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Villada, I.B. (2007). Immunologie comparée. In: Traité des infections et pathologies génitales à papillomavirus. Springer, Paris. https://doi.org/10.1007/978-2-287-72066-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-72066-6_3

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-72064-2

  • Online ISBN: 978-2-287-72066-6

Publish with us

Policies and ethics