Skip to main content

Segmentation Algorithm for the Evolutionary Biological Objects Images on a Complex Background

  • Conference paper
  • First Online:
Computational and Statistical Methods in Intelligent Systems (CoMeSySo 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 859))

Included in the following conference series:

  • 583 Accesses

Abstract

In the paper, characteristic features of color images for evolving biological objects are investigated. To create an effective and fast algorithm, the choice of the color space for subsequent processing is justified. A mathematical model of images for localized objects is proposed. Estimates of the accuracy for image segmentation are received.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pratt, W.K.: Introduction to Digital Image Processing. CRC Press, Boca Raton (2013)

    Google Scholar 

  2. Lukjanica, A.A., Shishkin, A.G.: Cifroavja obrabotka izobrazhenij. Aj-Jes-Jes Press, Moscow (2009)

    Google Scholar 

  3. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Forsyth, D., Ponce, J.: Computer Vision: A Modern Approach. “Williams” Publishing House, Moscow (2004)

    Google Scholar 

  5. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall, New Jersey (2008)

    Google Scholar 

  6. Ajzerman, M.A., Braverman, J.M., Rozanojer, L.I.: Metod potencialnyh funkcij v teorii obuchenija mashin. Nauka, Moscow (1970)

    Google Scholar 

  7. Bakut, P.A., Kolmogorov, G.S., Vornovickij, I.J.: Segmentacija izobrazhenij. Metody porogovoj obrabotki. Zarubezhnaja radiojelektronika. (10), 6–24 (1987)

    Google Scholar 

  8. Vincent, P.S.: Watersheds in digital space: an efficient algorithms based on immersion simulation. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  9. Capaev, A.P., Kretinin, O.V.: Metody segmentacii izobrazhenij v zadachah obnaruzhenija defektov poverhnosti. Kompjuternaja optika 36(3), 448–452 (2012)

    Google Scholar 

  10. Furman, Y.A.: Introduction to Contour Analysis and Its Applications in Image and Signal Processing. “Fizmatlit” Publisher, Moscow (2003)

    Google Scholar 

  11. Rogers, D.: Algorithmic Foundations of Computer Graphics. Mir, Moscow (1989)

    Google Scholar 

  12. Felzenswalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2) (2004)

    Google Scholar 

  13. Manylov, I.V.: Ocenka tochnosti raspoznavanija klassov pri avtomatizirovannoj obrabotke ajerofotosnimkov. Izv. vuzov. Priborostroenie 54(5), 35–39 (2011)

    Google Scholar 

  14. Statisticheskij analiz dannyh, modelirovanie i issledovanie verojatnostnyh zakonomernostej. Kompjuternyj podhod: monografija. Novosibirsk: Izd-vo NGTU, 888 p. (2011)

    Google Scholar 

  15. Palus, H.: The colour image processing handbook. In: Sangwine, S.J., Home, R.E.N. (eds.) Representations of Colour Images in Different Colour Spaces, pp. 67–90. Chapman & Hall, New York (1998)

    Google Scholar 

  16. Chochia, P.A.: Sglazhivanie cvetnyh izobrazhenij pri sohranenii konturov na osnove analiza rasstojanij v cvetovom prostranstve. Matematicheskie metody raspoznavanija obrazov, MMRO-13. Moskva, pp. 256–258 (2007)

    Google Scholar 

  17. Fisenko, V.T., Fisenko, T.: Metod avtomaticheskogo analiza cvetnyh izobrazhenij. Opticheskij zhurnal 70(9), 18–23 (2003)

    Google Scholar 

  18. Goden, Zh.: «Kolorimetrija pri videoobrabotke» – M: Izdatel’stvo «Tehnosfera», 328 p. (2008)

    Google Scholar 

  19. Djuran, B., Odell, P.: Klasternyj analiz. In: Demidenko, E.Z. (ed.) Statistika (1977)

    Google Scholar 

  20. Ohta, N., Robertson, A.: Colorimetry: Fundamentals and Applications. Wiley, Hoboken (2005)

    Book  Google Scholar 

  21. Goden, Zh.: Kolorimetrija pri videoobrabotke. Per. s fran. Tehnosfera, 328 p. (2008)

    Google Scholar 

  22. http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html

  23. Domasev, M.V., Gnatjuk, S.P.: Cvet, upravlenie cvetom, cvetovye raschety i izmerenija. SPb.: Piter, 224 p. (2009)

    Google Scholar 

  24. Shih, T.-Y.: The reversibility of six geometric color spaces. Photogram. Eng. Remote Sens. 61, 1223–1232 (1995)

    Google Scholar 

  25. Munsell, A.: A Grammar of Color. Van Nostrand-Rcinhold, New York (1969)

    Google Scholar 

  26. Cheng, H.D., Sun, Y.: A hierarchical approach to color image segmentation using homogeneity. IEEE Trans. Image Process. 9(12), 2071–2082 (2000)

    Article  Google Scholar 

  27. CIE. Colorimetry. Official recommendation of the international commission on illumination: technical report 15.2, Bureau Central de la CIE, Vienna, Austria (1986)

    Google Scholar 

  28. Fairchild, M.D.: Color Appearance Models. Munsell Color Science Laboratory, Rochester (2004)

    Google Scholar 

  29. Fisenko, V.T., Fisenko, T.J.: Computer image processing and recognition. “SPbGU ITMO” Publisher, Saint-Peterburg (2008). 192 p.

    Google Scholar 

  30. Loughren, A.V.: Recommendations of the national television system committee for a color television signal. J. SMPTE 60(321–326), 596 (1953)

    Google Scholar 

  31. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.T.: The Quickhull Algorithm for Convex Hull, GCG53. The Geometry Center, Minneapolis (1993)

    MATH  Google Scholar 

  32. Tochechnye polja i gruppovye obekty/Ja. A Furman, A. A Rozhencov, R. G. Hafizov, D. G. Hafizov, A. V. Kreveckij, R. V. Eruslanov; pod obshh. red. prof. Ja. A. Furmana. FIZMATLIT, 440 p. (2014)

    Google Scholar 

  33. Fieguth, P.: Statistical Image Processing and Multidimensional Modeling. Springer, Cham (2011)

    Book  Google Scholar 

  34. Ipatov, Y.A., Kreveckij, A.V.: Metody obnaruzhenija i prostranstvennoj lokalizacii grupp tochechnyh obektov. NB: Kibernetika i programmirovanie (6), S.17–S.25 (2014). https://doi.org/10.7256/2306-4196.2014.6.13642. http://e-notabene.ru/kp/article_13642.html

  35. Rjabinin, K.B., Furman, J.A., Krasilnikov, M.I.: Provolochnaja model prostranstvennogo gruppovogo tochechnogo obekta. Avtometrija, (3), 3–16 (2008)

    Google Scholar 

  36. Kreveckij, A.V., Chesnokov, S.E.: Kodirovanie i raspoznavanie izobrazhenij mnozhestv tochechnyh obektov na osnove modelej fizicheskih polej. Avtometrija (3), 80–89 (2002)

    Google Scholar 

  37. Preparata, F.: Vychislitelnaja geometrija: Vvedenie. In: Preparata, F., Shepmos, M. (ed.) Mir, 478 p. (1989)

    Google Scholar 

  38. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1, 132–133 (1972)

    Article  Google Scholar 

  39. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  40. Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three dimensions. Discret. Comput. Geom. 16, 361–368 (1995)

    Article  MathSciNet  Google Scholar 

  41. Bronshtejn, E.M. Approksimacija vypuklyh mnozhestv mnogogrannikami. Sovremennaja matematika. Fundamentalnye napravlenija. 22, 5–37 (2007)

    Google Scholar 

  42. Kamenev, G.K.: Optimalnye adaptivnye metody polijedralnoj approksimacii vypuklyh tel. Izd. VC RAN, 230 p. (2007)

    Google Scholar 

  43. Mikhlyaev, S.V.: Method for measuring the diameter of a growing crystal. Pattern Recogn. Image Anal. 15(4), 690–693 (2005)

    Google Scholar 

  44. CVX: Matlab Software for Disciplined Convex Programming. http://cvxr.com/cvx/

  45. Bedrincev, A.A., Chepyzhov, V.V.: Predstavlenie dannyh s pomoshhju jekstremalnyh jellipsoidov. Materialy konferencii «Informacionnye tehnologii i sistemy - 2013» 37-ja konferencija-shkola molodyh uchenyh i specialistov, Kaliningrad, Rossija, pp. 55–60 (2013)

    Google Scholar 

  46. Ovseevich, A.I., Chernous’ko, F.L.: Svojstva optimalnyh jellipsoidov, priblizhajushhih oblasti dostizhimosti sistem s neopredelennostjami. Izv. RAN «Teorija i sistemy upravlenija» (4), pp. 8–18 (2004)

    Google Scholar 

  47. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization, p. 402. Academic Press, New York (1982)

    Google Scholar 

  48. Deng, Y., Manjunath, B.S., Shin, H.: Color image segmentation. In: CVPR (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury Ipatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ipatov, Y., Krevetsky, A., Andrianov, Y., Sokolov, B. (2019). Segmentation Algorithm for the Evolutionary Biological Objects Images on a Complex Background. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Computational and Statistical Methods in Intelligent Systems. CoMeSySo 2018. Advances in Intelligent Systems and Computing, vol 859. Springer, Cham. https://doi.org/10.1007/978-3-030-00211-4_16

Download citation

Publish with us

Policies and ethics