Skip to main content

Polysaccharides-Based Hybrids with Carbon Nanotubes

  • Chapter
  • First Online:
Polysaccharide Based Hybrid Materials

Abstract

Carbon nanotubes (CNTs) are nanometric scale sp2 carbon bonded materials with a tube-like structure formed by rolling-up graphene sheet(s) in a seamless way into a cylinder with open or closed ends (De Volder et al in Science 339:535–539, 2013 [1]; Kumar et al in Prog Energy Combust Sci 64:219–253 2018 [2]; Chinnappan et al in J Mater Chem A 4:9347–9361 [3]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science. 2013;339:535–9.

    Article  Google Scholar 

  2. Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Carbon nanotubes: a potential material for energy conversion and storage. Prog Energy Combust Sci. 2018;64:219–53.

    Article  Google Scholar 

  3. Chinnappan A, Baskar C, Kim H, Ramakrishna S. Carbon nanotube hybrid nanostructures: future generation conducting materials. J Mater Chem A. 2016;4:9347–61.

    Article  CAS  Google Scholar 

  4. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:603–5.

    Article  CAS  Google Scholar 

  5. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  CAS  Google Scholar 

  6. Gupta S, Murthy CN, Prabha CR. Recent advances in carbon nanotube based electrochemical biosensors. Int J Biol Macromol. 2018;108:687–703.

    Article  CAS  Google Scholar 

  7. Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem. 2015;21:11–25.

    Article  CAS  Google Scholar 

  8. Baig Z, Mamat O, Mustapha M. Recent progress on the dispersion and the strengthening effect of carbon nanotubes and graphene-reinforced metal nanocomposites: a review. Crit Rev Solid State Mater Sci. 2018;43:1–46.

    Article  CAS  Google Scholar 

  9. Chen Z, Zhang A, Wang X, Zhu J, Fan Y, Yu H, Yang Z. The advances of carbon nanotubes in cancer diagnostics and therapeutics. J. Nanomater. 2017; (3418932).

    Google Scholar 

  10. Pop E, Mann D, Wang Q, Goodson K, Dai H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006;6:96–100.

    Article  CAS  Google Scholar 

  11. Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim K-H. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev. 2017;46:158–96.

    Article  CAS  Google Scholar 

  12. Vivekanandhan S, Schreiber M, Muthuramkumar S, Misra M, Mohanty AK. Carbon nanotubes from renewable feedstocks: a move toward sustainable nanofabrication. J Appl Polym Sci. 2017;134:44255.

    Article  Google Scholar 

  13. Research and Markets. https://www.researchandmarkets.com/reports/4343271/carbon-nanotubes-cnt-market-by-type-single#relb0 (2018). Accessed 28 Mar 2018.

  14. Xu J, Cao Z, Zhang Y, Yuan Z, Lou Z, Xu X, Wang X. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere. 2018;195:351–64.

    Article  CAS  Google Scholar 

  15. Rashid MH-O, Ralph SF. Carbon nanotube membranes: synthesis, properties, and future filtration applications. Nanomaterials. 2017;7:99.

    Article  Google Scholar 

  16. Pardo J, Peng Z, Leblanc RM. Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules. 2018;23:378.

    Article  Google Scholar 

  17. Yengejeh SI, Kazemi SA, Öchsner A. Carbon nanotubes as reinforcement in composites: a review of the analytical, numerical and experimental approaches. Comput Mater Sci. 2017;136:85–101.

    Article  Google Scholar 

  18. Ghoshal S. Polymer/Carbon Nanotubes (CNT) Nanocomposites processing using additive manufacturing (three-dimensional printing) technique: an overview. Fibers. 2017;5:40.

    Article  Google Scholar 

  19. Reales OAM, Toledo RD. Filho, A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites. Constr Build Mater. 2017;154:697–710.

    Article  CAS  Google Scholar 

  20. Qi H, Mäder E, Liu J. Electrically conductive aerogels composed of cellulose and carbon nanotubes. J. Mater. Chem. A. 2013;1:9714–20.

    Article  CAS  Google Scholar 

  21. Qi H, Mäder E, Liu J. Unique water sensors based on carbon nanotube-cellulose composites. Sens Actuators B. 2013;185:225–30.

    Article  CAS  Google Scholar 

  22. Pang Z, Sun X, Wu X, Nie Y, Liu Z, Yue L. Fabrication and application of carbon nanotubes/cellulose composite paper. Vacuum. 2015;122:135–42.

    Article  CAS  Google Scholar 

  23. Ahmad AL, Jawad ZA, Low SC, Zein SHS. A cellulose acetate/multi-walled carbon nanotube mixed matrix membrane for CO2/N2 separation. J Memb Sci. 2014;451:55–66.

    Article  CAS  Google Scholar 

  24. Casella IG, Gioia D, Rutilo M. A multi-walled carbon nanotubes/cellulose acetate composite electrode (MWCNT/CA) as sensing probe for the amperometric determination of some catecholamines. Sens Actuators B. 2018;255:3533–40.

    Article  CAS  Google Scholar 

  25. Mandal B, Das D, Rameshbabu AP, Dhara S, Pal S. A biodegradable, biocompatible transdermal device derived from carboxymethyl cellulose and multi-walled carbon nanotubes for sustained release of diclofenac sodium. RSC Adv. 2016;6:19605–11.

    Article  CAS  Google Scholar 

  26. Soheilmoghaddam M, Adelnia H, Sharifzadeh G, Wahit MU, Wong TW, Yussuf AA. Bionanocomposite regenerated cellulose/single-walled carbon nanotube films prepared using ionic liquid solvent. Cellulose. 2017;24:811–22.

    Article  CAS  Google Scholar 

  27. Cheng F, Liu C, Li H, Wei X, Yan T, Wang Y, Song Y, He J, Huang Y. Carbon nanotube-modified oxidized regenerated cellulose gauzes for hemostatic applications. Carbohydr Polym. 2018;183:246–53.

    Article  CAS  Google Scholar 

  28. Zeng X, Deng L, Yao Y, Sun R, Xu J, Wong C-P. Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage. J Mater Chem C. 2016;4:6037–44.

    Article  CAS  Google Scholar 

  29. Yamakawa A, Suzuki S, Oku T, Enomoto K, Ikeda M, Rodrigue J, Tateiwa K, Terada Y, Yano H, Kitamura S. Nanostructure and physical properties of cellulose nanofiber-carbon nanotube composite films. Carbohydr Polym. 2017;171:129–35.

    Article  CAS  Google Scholar 

  30. Sun J, Zhang C, Yuan Z, Ji X, Fu Y, Li H, Qin M. Composite films with ordered carbon nanotubes and cellulose nanocrystals. J Phys Chem C. 2017;121:8976–81.

    Article  CAS  Google Scholar 

  31. Bai L, Bossa N, Qu F, Winglee J, Li G, Sun K, Liang H, Wiesner MR. Comparison of hydrophilicity and mechanical properties of nanocomposite membranes with cellulose nanocrystals and carbon nanotubes. Environ Sci Technol. 2017;51:253–62.

    Article  CAS  Google Scholar 

  32. Aritonang HF, Kamu VS, Ciptati C, Onggo D, Radiman CL. Performance of platinum nanoparticles/multiwalled carbon nanotubes/bacterial cellulose composite as anode catalyst for proton exchange membrane fuel cells. Bull Chem React Eng Catal. 2017;12:287–92.

    Article  CAS  Google Scholar 

  33. Gutiérrez-Hernández JM, Escobar-García DM, Escalante A, Flores H, González FJ, Gatenholm P, Toriz G. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration. Mater Sci Eng C. 2017;75:445–53.

    Article  Google Scholar 

  34. Meng Q, Manas-Zloczower I. Carbon nanotubes enhanced cellulose nanocrystals films with tailorable electrical conductivity. Compos Sci Technol. 2015;120:1–8.

    Article  CAS  Google Scholar 

  35. El Badawi N, Ramadan AR, Esawi AMK, El-Morsi M. Novel carbon nanotube-cellulose acetate nanocomposite membranes for water filtration applications. Desalination. 2014;344:79–85.

    Article  Google Scholar 

  36. Qi H, Liu J, Pionteck J, Pötschke P, Mäder E. Carbon nanotube-cellulose composite aerogels for vapour sensing. Sens Actuators B. 2015;213:20–6.

    Article  CAS  Google Scholar 

  37. Qi H, Schulz B, Vad T, Liu J, Mäder E, Seide G, Gries T. Novel carbon nanotube/cellulose composite fibers as multifunctional materials. ACS Appl Mater Interfaces. 2015;7:22404–12.

    Article  CAS  Google Scholar 

  38. Dichiara AB, Song A, Goodman SM, He D, Bai J. Smart papers comprising carbon nanotubes and cellulose microfibers for multifunctional sensing applications. J Mater Chem A. 2017;5:20161–9.

    Article  CAS  Google Scholar 

  39. Kuzmenko V, Naboka O, Haque M, Staaf H, Göransson G, Gatenholm P, Enoksson P. Sustainable carbon nanofibers/nanotubes composites from cellulose as electrodes for supercapacitors. Energy. 2015;90:1490–6.

    Article  CAS  Google Scholar 

  40. Garcia I, Azcune I, Casuso P, Carrasco PM, Grande HJ, Cabañero G, Katsigiannopoulos D, Grana E, Dimos K, Karakassides MA, Odriozola I, Avgeropoulos A. Carbon nanotubes/chitin nanowhiskers aerogel achieved by quaternization-induced gelation. J Appl Polym Sci. 2015;132:42547.

    Google Scholar 

  41. Chen C, Yang C, Li S, Li D. A three-dimensionally chitin nanofiber/carbon nanotube hydrogel network for foldable conductive paper. Carbohydr Polym. 2015;134:309–13.

    Article  CAS  Google Scholar 

  42. Wu S, Duan B, Lu A, Wang Y, Ye Q, Zhang L. Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates. Carbohydr Polym. 2017;174:830–40.

    Article  CAS  Google Scholar 

  43. Wu S, Duan B, Zeng X, Lu A, Xu X, Wang Y, Ye Q, Zhang L. Construction of blood compatible lysine-immobilized chitin/carbon nanotube microspheres and potential applications for blood purified therapy. J Mater Chem B. 2017;5:2952–63.

    Article  CAS  Google Scholar 

  44. Salam MA, El-Shishtawy RM, Obaid AY. Synthesis of magnetic multi-walled carbon nanotubes/magnetite/chitin magnetic nanocomposite for the removal of Rose Bengal from real and model solution. J Ind Eng Chem. 2014;20:3559–67.

    Article  CAS  Google Scholar 

  45. Singh N, Chen J, Koziol KK, Hallam KR, Janas D, Patil AJ, Strachan A, Hanley JG, Rahatekar SS. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth. Nanoscale. 2016;8:8288–99.

    Article  CAS  Google Scholar 

  46. Xu H, Wang L, Luo J, Song Y, Liu J, Zhang S, Cai X. Selective recognition of 5-hydroxytryptamine and dopamine on a multi-walled carbon nanotube-chitosan hybrid film-modified microelectrode array. Sensors. 2015;15:1008–21.

    Article  CAS  Google Scholar 

  47. Zhang Q, Qing Y, Huang X, Li C, Xue J. Synthesis of single-walled carbon nanotubes–chitosan nanocomposites for the development of an electrochemical biosensor for serum leptin detection. Mater Lett. 2018;211:348–51.

    Article  CAS  Google Scholar 

  48. Shukla SK, Lavon A, Shmulevich O, Ben-Yoav H. The effect of loading carbon nanotubes onto chitosan films on electrochemical dopamine sensing in the presence of biological interference. Talanta. 2018;181:57–64.

    Article  CAS  Google Scholar 

  49. Ouyang A, Gong Q, Liang J. Carbon nanotube-chitosan composite beads with radially aligned channels and nanotube-exposed walls for bilirubin adsorption. Adv Eng Mater. 2015;17:460–6.

    Article  CAS  Google Scholar 

  50. Liu X, Zhang Y, Ma D, Tang H, Tan L, Xie Q, Yao S. Biocompatible multi-walled carbon nanotube-chitosan-folic acid nanoparticle hybrids as GFP gene delivery materials. Colloids Surf B Biointerfaces. 2013;111:224–31.

    Article  CAS  Google Scholar 

  51. Patel KD, Kim TH, Lee EJ, Han CM, Lee JY, Singh RK, Kim HW. Nanostructured biointerfacing of metals with carbon nanotube/chitosan hybrids by electrodeposition for cell stimulation and therapeutics delivery. ACS Appl Mater Interfaces. 2014;6:20214–24.

    Article  CAS  Google Scholar 

  52. Popuri SR, Frederick R, Chang C-Y, Fang S-S, Wang C-C, Lee L-C. Removal of copper (II) ions from aqueous solutions onto chitosan/carbon nanotubes composite sorbent. Desalin Water Treat. 2014;52:691–701.

    Article  CAS  Google Scholar 

  53. Liu H, Gong C, Wang J, Liu X, Liu H, Cheng F, Wang G, Zheng G, Qin C, Wen S. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications. Carbohydr Polym. 2016;136:1379–85.

    Article  CAS  Google Scholar 

  54. Ou Y, Tsen W-C, Gong C, Wang J, Liu H, Zheng G, Qin C, Wen S. Chitosan-based composite membranes containing chitosan-coated carbon nanotubes for polymer electrolyte membranes. Polym Adv Technol. 2018;29:612–22.

    Article  CAS  Google Scholar 

  55. Wang J, Gong C, Wen S, Liu H, Qin C, Xiong C, Dong L. Proton exchange membrane based on chitosan and solvent-free carbon nanotube fluids for fuel cells applications. Carbohydr Polym. 2018;186:200–7.

    Article  CAS  Google Scholar 

  56. Figueredo F, González-Pabón MJ, Cortón E. Low cost layer by layer construction of CNT/Chitosan flexible paper-based electrodes: a versatile electrochemical platform for point of care and point of need testing. Electroanalysis. 2018;30:497–508.

    Article  CAS  Google Scholar 

  57. Seo SJ, Kim JJ, Kim JH, Lee JY, Shin US, Lee EJ, Kim HW. Enhanced mechanical properties and bone bioactivity of chitosan/silica membrane by functionalized-carbon nanotube incorporation. Compos Sci Technol. 2014;96:31–7.

    Article  CAS  Google Scholar 

  58. Trigueiro JPC, Silva GG, Pereira FV, Lavall RL. Layer-by-layer assembled films of multi-walled carbon nanotubes with chitosan and cellulose nanocrystals. J Colloid Interface Sci. 2014;432:214–20.

    Article  CAS  Google Scholar 

  59. Song K, Gao A, Cheng X, Xie K. Preparation of the superhydrophobic nano-hybrid membrane containing carbon nanotube based on chitosan and its antibacterial activity. Carbohydr Polym. 2015;130:381–7.

    Article  CAS  Google Scholar 

  60. Zhu Y, Liu X, Yeung KWK, Chu PK, Wu S. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures. Appl Surf Sci. 2017;400:14–23.

    Article  CAS  Google Scholar 

  61. Morales NJ, Candal R, Famá L, Goyanes S, Rubiolo GH. Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement. Carbohydr Polym. 2015;127:291–9.

    Article  CAS  Google Scholar 

  62. Liu S, Li X, Chen L, Li L, Li B, Zhu J. Understanding physicochemical properties changes from multi-scale structures of starch/CNT nanocomposite films. Int J Biol Macromol. 2017;104:1330–7.

    Article  CAS  Google Scholar 

  63. Shahbazi M, Rajabzadeh G, Sotoodeh S. Functional characteristics, wettability properties and cytotoxic effect of starch film incorporated with multi-walled and hydroxylated multi-walled carbon nanotubes. Int J Biol Macromol. 2017;104:597–605.

    Article  CAS  Google Scholar 

  64. Mallakpour S, Rashidimoghadam S. Starch/MWCNT-vitamin C nanocomposites: Electrical, thermal properties and their utilization for removal of methyl orange. Carbohydr Polym. 2017;169:23–32.

    Article  CAS  Google Scholar 

  65. Mallakpour S, Khodadadzadeh L. Fructose functionalized MWCNT as a filler for starch nanocomposites: Fabrication and characterizations. Prog Org Coat. 2018;114:244–9.

    Article  CAS  Google Scholar 

  66. Mallakpour S, Khodadadzadeh L. Ultrasonic-assisted fabrication of starch/MWCNT-glucose nanocomposites for drug delivery. Ultrason Sonochem. 2018;40:402–9.

    Article  CAS  Google Scholar 

  67. Cheng J, Zheng P, Zhao F, Ma X. The composites based on plasticized starch and carbon nanotubes. Int J Biol Macromol. 2013;59:13–9.

    Article  CAS  Google Scholar 

  68. Swain SK, Pradhan AK, Sahu HS. Synthesis of gas barrier starch by dispersion of functionalized multiwalled carbon nanotubes. Carbohydr Polym. 2013;94:663–8.

    Article  CAS  Google Scholar 

  69. Zhao S, Gao Y, Li J, Zhang G, Sun R, Wong CP. Facile preparation of folded structured single-walled carbon nanotube hybrid paper: Toward applications as flexible conductor and temperature-driven switch. Carbon. 2015;95:987–94.

    Article  CAS  Google Scholar 

  70. Joddar B, Garcia E, Casas A, Stewart CM. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies. Sci Rep. 2016;6:32456.

    Article  CAS  Google Scholar 

  71. Mottet L, Le Cornec D, Noël J-M, Kanoufi F, Delord B, Poulin P, Bibette J, Bremond N. Conductive hydrogel based on alginate and carbon nanotubes for probing microbial electroactivity. Soft Matter. 2018;14:1434–41.

    Article  CAS  Google Scholar 

  72. Shi X, Zheng Y, Wang C, Yue L, Qiao K, Wang G, Wang L, Quan H. Dual stimulus responsive drug releasing under the interaction of pH value and pulsatile electric field for bacterial cellulose/sodium alginate/multi-walled carbon nanotubes hybrid hydrogel. RSC Adv. 2015;5:41820–9.

    Article  CAS  Google Scholar 

  73. Meng L, Xia W, Liu L, Niu L, Lu Q. Golden single-walled carbon nanotubes prepared using double layer polysaccharides bridge for photothermal therapy. ACS Appl Mater Interfaces. 2014;6:4989–96.

    Article  CAS  Google Scholar 

  74. Estrada AC, Daniel-da-Silva AL, Trindade T. Photothermally enhanced drug release by κ-carrageenan hydrogels reinforced with multi-walled carbon nanotubes. RSC Adv. 2013;3:10828–36.

    Article  CAS  Google Scholar 

  75. Duman O, Tunç S, Polat TG, Bozoǧlan BKI. Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption. Carbohydr Polym. 2016;147:79–88.

    Article  CAS  Google Scholar 

  76. Arnal-Pastor M, Tallà Ferrer C, Herrero MH, Aldaraví AM-G, Pradas MM, Vallés-Lluch A. Scaffolds based on hyaluronan and carbon nanotubes gels. J Biomater Appl. 2016;31:534–43.

    Article  CAS  Google Scholar 

  77. Cabral DGA, Lima ECS, Moura P, Dutra RF. A label-free electrochemical immunosensor for hepatitis B based on hyaluronic acid-carbon nanotube hybrid film. Talanta. 2016;148:209–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Sofia da Rocha Freire Barros .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vilela, C., Pinto, R.J.B., Pinto, S., Marques, P., Silvestre, A., da Rocha Freire Barros, C.S. (2018). Polysaccharides-Based Hybrids with Carbon Nanotubes. In: Polysaccharide Based Hybrid Materials. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-030-00347-0_5

Download citation

Publish with us

Policies and ethics