Skip to main content

Saliency Detection via Multi-view Synchronized Manifold Ranking

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10989))

Included in the following conference series:

  • 2474 Accesses

Abstract

Saliency detection is an important problem in computer vision. Recently, graph-based manifold ranking (GMR) has been successfully employed in image saliency detection problem. Traditional GMR involves two main ranking stages, i.e., ranking with background queries and ranking with foreground queries. However, these two ranking stages are conducted separately which obviously ignores the correlation between background and foreground queries. Also, traditional GMR uses a single graph which lacks of considering multi-view features. To overcome these problems, in this paper, we propose a new multi-view synchronized manifold ranking for saliency detection problem. Our method aims to perform background and foreground ranking simultaneously by exploiting multiple kinds of features and thus performs more robustly and discriminatively for saliency detection problem. Experimental results on three benchmark datasets demonstrate the effectiveness of the proposed saliency detection method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achanta, R., Estrada, F., Wils, P., Süsstrunk, S.: Salient region detection and segmentation. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 66–75. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79547-6_7

    Chapter  Google Scholar 

  2. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Ssstrunk, S.: Slic superpixels. EPFL 149300 (2010)

    Google Scholar 

  3. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  4. Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)

    Article  MathSciNet  Google Scholar 

  5. Chang, K.Y., Liu, T.L., Chen, H.T., Lai, S.H.: Fusing generic objectness and visual saliency for salient object detection. In: ICCV, pp. 914–921 (2011)

    Google Scholar 

  6. Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detection. In: CVPR, pp. 409–416 (2011)

    Google Scholar 

  7. Chuan, Y., Lihe, Z., Huchuan, L., Xiang, R., Ming-Hsuan, Y.: Saliency detection via graph-based manifold ranking. In: CVPR, pp. 3166–3173 (2013)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  9. Duan, L., Wu, C., Miao, J., Qing, L., Fu, Y.: Visual saliency detection by spatially weighted dissimilarity. In: CVPR, pp. 473–480 (2011)

    Google Scholar 

  10. Erdem, E., Erdem, A.: Visual saliency estimation by nonlinearly integrating features using region covariances. J. Vis. 13(4), 11 (2013)

    Article  Google Scholar 

  11. Feng, Y., Xiao, J., Zhuang, Y., Liu, X.: Adaptive unsupervised multi-view feature selection for visual concept recognition. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 343–357. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_26

    Chapter  Google Scholar 

  12. Guan, Y., Jiang, B., Xiao, Y., Tang, J., Luo, B.: A new graph ranking model for image saliency detection problem. In: IEEE International Conference on Software Engineering Research, Management and Applications, pp. 151–156 (2017)

    Google Scholar 

  13. Han, J., Zhang, D., Cheng, G., Guo, L., Ren, J.: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote. Sens. 53(6), 3325–3337 (2015)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  15. Hou, X., Harel, J., Koch, C.: Image signature: highlighting sparse salient regions. IEEE TPAMI 34(1), 194–201 (2012)

    Article  Google Scholar 

  16. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE TPAMI 20, 1254–1259 (1998)

    Article  Google Scholar 

  17. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing Markov chain. In: ICCV, pp. 1665–1672 (2013)

    Google Scholar 

  18. Jimei, Y., Ming-Hsuan, Y.: Top-down visual saliency via joint CRF and dictionary learning. In: CVPR, pp. 2296–2303 (2012)

    Google Scholar 

  19. Jonathan, H., Christof, K., Pietro, P.: Graph-based visual saliency. In: NIPS, pp. 545–552 (2006)

    Google Scholar 

  20. Kanan, C., Tong, M.H., Zhang, L., Cottrell, G.W.: Sun: top-down saliency using natural statistics. Vis. Cogn. 17(6–7), 979–1003 (2009)

    Article  Google Scholar 

  21. Li, C., Yuan, Y., Cai, W., Xia, Y., Feng, D.D.: Robust saliency detection via regularized random walks ranking. In: CVPR, pp. 2710–2717 (2015)

    Google Scholar 

  22. Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5455–5463 (2015)

    Google Scholar 

  23. Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.H.: Saliency detection via dense and sparse reconstruction. In: ICCV, pp. 2976–2983 (2013)

    Google Scholar 

  24. Margolin, R., Tal, A., Zelnik-Manor, L.: What makes a patch distinct? In: CVPR, pp. 1139–1146 (2013)

    Google Scholar 

  25. Movahedi, V., Elder, J.H.: Design and perceptual validation of performance measures for salient object segmentation. In: CVPRW, pp. 49–56 (2010)

    Google Scholar 

  26. Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Saliency estimation using a non-parametric low-level vision model. In: CVPR, pp. 433–440 (2011)

    Google Scholar 

  27. Peng, Q., Cheung, Y.M., You, X., Tang, Y.Y.: A hybrid of local and global saliencies for detecting image salient region and appearance. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–12 (2017)

    Google Scholar 

  28. Perazzi, F., ähenb ühl, P.K., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: CVPR, pp. 733–740 (2012)

    Google Scholar 

  29. Rahtu, E., Kannala, J., Salo, M., Heikkilä, J.: Segmenting salient objects from images and videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 366–379. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_27

    Chapter  Google Scholar 

  30. Ravi, A., Sheila, H., Francisco, E., Sabine, S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597–1604 (2009)

    Google Scholar 

  31. Rezazadegan Tavakoli, H., Rahtu, E., Heikkilä, J.: Fast and efficient saliency detection using sparse sampling and kernel density estimation. In: SCIA, pp. 666–675 (2011)

    Google Scholar 

  32. Seo, H.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. J. Vis. 9(12), 15 (2009)

    Article  Google Scholar 

  33. Tong, N., Lu, H., Zhang, L., Ruan, X.: Saliency detection with multi-scale superpixels. IEEE Signal Process. Lett. 21(9), 1035–1039 (2014)

    Article  Google Scholar 

  34. Tu, W.C., He, S., Yang, Q., Chien, S.Y.: Real-time salient object detection with a minimum spanning tree. In: CVPR, pp. 2334–2342 (2016)

    Google Scholar 

  35. Wang, Q., Zheng, W., Piramuthu, R.: Grab: visual saliency via novel graph model and background priors. In: CVPR, pp. 535–543 (2016)

    Google Scholar 

  36. Wang, Z., Ren, J., Zhang, D., Sun, M., Jiang, J.: A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing 287, 68–83 (2018)

    Article  Google Scholar 

  37. Xiaodi, H., Liqing, Z.: Saliency detection: a spectral residual approach. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  38. Xie, Y., Lu, H., Yang, M.H.: Bayesian saliency via low and mid level cues. IEEE TIP 22(5), 1689–1698 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR, pp. 1155–1162 (2013)

    Google Scholar 

  40. Yan, Y., et al.: Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement. Pattern Recogn. 79, 65–78 (2018)

    Article  Google Scholar 

  41. Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: Sun: a Bayesian framework for saliency using natural statistics. J. Vis. 8(7), 32.1–32.20 (2008)

    Article  Google Scholar 

  42. Zhao, R., Ouyang, W., Li, H., Wang, X.: Saliency detection by multi-context deep learning. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1265–1274 (2015)

    Google Scholar 

  43. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: CVPR, pp. 2814–2821 (2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (61602001, 61502006, 61402002); Natural Science Foundation of Anhui Higher Education Institutions of China (KJ2016A020, KJ2018A0023), Natural science foundation of Anhui Province (1508085QF127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guan, Y., Jiang, B., Zhang, Y., Zheng, A., Sun, D., Luo, B. (2018). Saliency Detection via Multi-view Synchronized Manifold Ranking. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00563-4_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00562-7

  • Online ISBN: 978-3-030-00563-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics