Skip to main content

Residual Compression Network for Faster Correlation Tracking

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2018 (PCM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11164))

Included in the following conference series:

  • 3661 Accesses

Abstract

The recent Correlation Filter (CF) based methods have shown attractive performance in visual tracking task. In real-time CF based trackers, they usually adopt hand-crafted features (e.g., HOG and Color Names), while these artificially designed features still have redundancy and can be further compressed and refined. In this paper, we design a lightweight network to offline learn how to compress the hand-crafted features for better and faster correlation tracking. To achieve this goal, we adopt CF as one layer in the network to force the learned model to be suitable for tracking task. Besides, we apply residual structure to avoid the overfitting problem in the training process. Our simple yet effective network is universal and can be applied to existing CF based trackers. After adopting our lightweight network, several state-of-the-art CF based trackers are improved in both tracking accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.: Staple: complementary learners for real-time tracking. In: CVPR (2016)

    Google Scholar 

  2. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: ECCV (2016)

    Google Scholar 

  3. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: CVPR (2010)

    Google Scholar 

  4. Choi, J., Jin Chang, H., Jeong, J., Demiris, Y., Young Choi, J.: Visual tracking using attention-modulated disintegration and integration. In: CVPR (2016)

    Google Scholar 

  5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  6. Danelljan, M., Bhat, G., Shahbaz Khan, F., Felsberg, M.: Eco: efficient convolution operators for tracking. In: CVPR (2017)

    Google Scholar 

  7. Danelljan, M., Häger, G., Khan, F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: BMVC (2014)

    Google Scholar 

  8. Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: ICCV (2015)

    Google Scholar 

  9. Danelljan, M., Robinson, A., Khan, F.S., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: ECCV (2016)

    Google Scholar 

  10. Danelljan, M., Shahbaz Khan, F., Felsberg, M., Van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: CVPR (2014)

    Google Scholar 

  11. Galoogahi, H.K., Fagg, A., Lucey, S.: Learning background-aware correlation filters for visual tracking. In: ICCV (2017)

    Google Scholar 

  12. Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic siamese network for visual object tracking. In: CVPR, pp. 1–9

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  14. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: ECCV (2012)

    Google Scholar 

  15. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. TPAMI 37(3), 583–596 (2015)

    Article  Google Scholar 

  16. Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: ECCV Workshop (2014)

    Google Scholar 

  17. Lukezic, A., Vojir, T., Cehovin Zajc, L., Matas, J., Kristan, M.: Discriminative correlation filter with channel and spatial reliability. In: CVPR (2017)

    Google Scholar 

  18. Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: ICCV (2015)

    Google Scholar 

  19. Ma, C., Yang, X., Zhang, C., Yang, M.H.: Long-term correlation tracking. In: CVPR (2015)

    Google Scholar 

  20. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: CVPR (2016)

    Google Scholar 

  21. Qi, Y., Zhang, S., Qin, L., Yao, H., Huang, Q., Yang, J.L.M.H.: Hedged deep tracking. In: CVPR (2016)

    Google Scholar 

  22. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  24. Song, Y., Ma, C., Gong, L., Zhang, J., Lau, R., Yang, M.H.: Crest: convolutional residual learning for visual tracking. In: ICCV (2017)

    Google Scholar 

  25. Valmadre, J., Bertinetto, L., Henriques, J.F., Vedaldi, A., Torr, P.H.: End-to-end representation learning for correlation filter based tracking. In: CVPR (2017)

    Google Scholar 

  26. Vedaldi, A., Lenc, K.: Matconvnet: convolutional neural networks for matlab. In: ACM MM (2014)

    Google Scholar 

  27. Wang, M., Liu, Y., Huang, Z.: Large margin object tracking with circulant feature maps. In: CVPR (2017)

    Google Scholar 

  28. Wang, Q., Gao, J., Xing, J., Zhang, M., Hu, W.: Dcfnet: discriminant correlation filters network for visual tracking. arXiv preprint arXiv:1704.04057 (2017)

  29. Weijer, J.V.D., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. TIP 18(7), 1512–1523 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR (2013)

    Google Scholar 

  31. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. TPAMI 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  32. Zhang, J., Ma, S., Sclaroff, S.: Meem: robust tracking via multiple experts using entropy minimization. In: ECCV (2014)

    Google Scholar 

  33. Zhang, K., Zhang, L., Yang, M.H., Zhang, D.: Fast visual tracking via dense spatio-temporal context learning. In: ECCV (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, C., Wang, N., Zhou, W., Li, W., Li, H. (2018). Residual Compression Network for Faster Correlation Tracking. In: Hong, R., Cheng, WH., Yamasaki, T., Wang, M., Ngo, CW. (eds) Advances in Multimedia Information Processing – PCM 2018. PCM 2018. Lecture Notes in Computer Science(), vol 11164. Springer, Cham. https://doi.org/10.1007/978-3-030-00776-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00776-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00775-1

  • Online ISBN: 978-3-030-00776-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics