Skip to main content

Pilot Design of a Rule-Based System and an Artificial Neural Network to Risk Evaluation of Atherosclerotic Plaques in Long-Range Clinical Research

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11140))

Included in the following conference series:

Abstract

Early diagnostics and knowledge of the progress of atherosclerotic plaques are key parameters which can help start the most efficient treatment. Reliable prediction of growing of atherosclerotic plaques could be very important part of early diagnostics to judge potential impact of the plaque and to decide necessity of immediate artery recanalization. For this pilot study we have a large set of measured data from total of 482 patients. For each patient the width of the plaque from left and right side during at least 5 years at regular intervals for 6 months was measured Patients were examined each 6 months and width of the plaque was measured using ultrasound B-image and the data were stored into a database. The first part is focused on rule-based expert system designed for evaluation of suggestion to immediate recanalization according to progress of the plaque. These results will be verified by an experienced sonographer. This system could be a starting point to design an artificial neural network with adaptive learning based on image processing of ultrasound B-images for classification of the plaques using feature analysis. The principle of the network is based on edge detection analysis of the plaques using feed-forwarded network with Error Back-Propagation algorithm. Training and learning of the ANN will be time-consuming processes for a long-term research. The goal is to create ANN which can recognize the border of the plaques and to measure of the width. The expert system and ANN are two different approaches, however, both of them can cooperate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saijo, Y., van der Steen, A.F.W.: Vascular Ultrasound. Springer, Japan (2012). https://doi.org/10.1007/978-4-431-67871-7. (softcover reprint from 2003)

    Book  Google Scholar 

  2. Dougherty, G.: Digital Image Processing for Medical Applications, 1st edn. Cambridge University Press (2009). ISBN 978-0-521-86085-7

    Google Scholar 

  3. Blahuta, J., Soukup, T. Cermak, P., Rozsypal, J., Vecerek, M.: Ultrasound medical image recognition with artificial intelligence for Parkinson’s disease classification. In: Proceedings of the 35th International Convention, MIPRO 2012 (2012)

    Google Scholar 

  4. Blahuta, J., Cermak, P., Soukup, T., Vecerek, M.: A reproducible application to B-MODE transcranial ultrasound based on echogenicity evaluation analysis in defined area of interest. In: 6th International Conference on Soft Computing and Pattern Recognition (2014)

    Google Scholar 

  5. Blahuta, J., Soukup, T., Martinu, J.: An expert system based on using artificial neural network and region-based image processing to recognition substantia nigra and atherosclerotic plaques in b-images: a prospective study. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10305, pp. 236–245. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59153-7_21

    Chapter  Google Scholar 

  6. Blahuta, J., et al.: A new program for highly reproducible automatic evaluation of the substantia nigra from transcranial sonographic images. Biomed. Papers, 158(4), 621–627 (2014)

    Article  Google Scholar 

  7. Skoloudik, D., et al.: Transcranial Sonography of the Insula: Digitized Image Analysis of Fusion Images with Magnetic Resonance. Ultraschall in der Medizin, Georg Thieme Verlag KG Stuttgart (2016)

    Article  Google Scholar 

  8. Blahuta, J., Soukup, T., Cermak, P.: How to detect and analyze atherosclerotic plaques in B-MODE ultrasound images: a pilot study of reproducibility of computer analysis. In: Dichev, C., Agre, G. (eds.) AIMSA 2016. LNCS (LNAI), vol. 9883, pp. 360–363. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44748-3_37

    Chapter  Google Scholar 

  9. Marvin, L.: Neural Networks with MATLAB. CreateSpace Independent Publishing Platform (2016). ISBN 978-1539701958

    Google Scholar 

  10. Herault, J.: Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing) 1st edn. World Scientific Publishing Company (2010). ISBN 978-9814273688

    Google Scholar 

  11. Hijazi, S., Kumar R., Rowen, Ch.: Using Convolutional Neural Networks for Image Recognition. Cadence (2016)

    Google Scholar 

  12. Cermak, P., Pokorny, P.: The fuzzy-neuro development system FUZNET. In: 18th International Conference on Methods and Models in Automation and Robotics (MMAR), vol. 75, no. 80, pp. 26–29 (2013). ISBN 978-1-4673-5506-3

    Google Scholar 

Download references

Acknowledgments

This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) project IT4Innovations excellence in science - LQ1602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Blahuta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blahuta, J., Soukup, T., Skacel, J. (2018). Pilot Design of a Rule-Based System and an Artificial Neural Network to Risk Evaluation of Atherosclerotic Plaques in Long-Range Clinical Research. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11140. Springer, Cham. https://doi.org/10.1007/978-3-030-01421-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01421-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01420-9

  • Online ISBN: 978-3-030-01421-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics