Skip to main content

Self Hyper-Parameter Tuning for Data Streams

  • Conference paper
  • First Online:
Discovery Science (DS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11198))

Included in the following conference series:

Abstract

The widespread usage of smart devices and sensors together with the ubiquity of the Internet access is behind the exponential growth of data streams. Nowadays, there are hundreds of machine learning algorithms able to process high-speed data streams. However, these algorithms rely on human expertise to perform complex processing tasks like hyper-parameter tuning. This paper addresses the problem of data variability modelling in data streams. Specifically, we propose and evaluate a new parameter tuning algorithm called Self Parameter Tuning (SPT). SPT consists of an online adaptation of the Nelder & Mead optimisation algorithm for hyper-parameter tuning. The method explores a dynamic size sample method to evaluate the current solution, and uses the Nelder & Mead operators to update the current set of parameters. The main contribution is the adaptation of the Nelder-Mead algorithm to automatically tune regression hyper-parameters for data streams. Additionally, whenever concept drifts occur in the data stream, it re-initiates the search for new hyper-parameters. The proposed method has been evaluated on regression scenario. Experiments with well known time-evolving data streams show that the proposed SPT hyper-parameter optimisation outperforms the results of previous expert hyper-parameter tuning efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1), 281–305 (2012). http://dl.acm.org/citation.cfm?id=2503308.2188395

  2. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis. J. Mach. Learn. Res. 11(May), 1601–1604 (2010)

    Google Scholar 

  3. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006). http://dl.acm.org/citation.cfm?id=1248547.1248548

  4. Duarte, J., Gama, J., Bifet, A.: Adaptive model rules from high-speed data streams. ACM Trans. Knowl. Discov. Data 10(3), 30:1–30:22 (2016). http://doi.acm.org/10.1145/2829955

    Article  Google Scholar 

  5. Escalante, H.J., Montes, M., Sucar, E.: Ensemble particle swarm model selection. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)

    Google Scholar 

  6. Escalante, H.J., Montes, M., Sucar, L.E.: Particle swarm model selection. J. Mach. Learn. Res. 10(Feb), 405–440 (2009)

    Google Scholar 

  7. Fernandes, S., Tork, H.F., Gama, J.: The initialization and parameter setting problem in tensor decomposition-based link prediction. In: 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 99–108 (Oct 2017). https://doi.org/10.1109/DSAA.2017.83

  8. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Advances in Neural Information Processing Systems, pp. 2962–2970 (2015)

    Google Scholar 

  9. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1126–1135. PMLR, International Convention Centre, Sydney, Australia (06–11 Aug 2017). http://proceedings.mlr.press/v70/finn17a.html

  10. Gama, J., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning algorithms. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 329–338. ACM (2009)

    Google Scholar 

  11. Gama, J.: Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach. Learn. 90(3), 317–346 (2013). https://doi.org/10.1007/s10994-012-5320-9

    Article  MathSciNet  Google Scholar 

  12. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification (2003)

    Google Scholar 

  13. Kar, R., Konar, A., Chakraborty, A., Ralescu, A.L., Nagar, A.K.: Extending the nelder-mead algorithm for feature selection from brain networks. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4528–4534. IEEE (2016)

    Google Scholar 

  14. Koenigstein, N., Dror, G., Koren, Y.: Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 165–172. ACM (2011)

    Google Scholar 

  15. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, pp. 1137–1143. IJCAI 1995. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1995). http://dl.acm.org/citation.cfm?id=1643031.1643047

  16. Kohavi, R., John, G.H.: Automatic parameter selection by minimizing estimated error. In: Machine Learning Proceedings 1995, pp. 304–312. Elsevier (1995)

    Google Scholar 

  17. Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Auto-weka 2.0: Automatic model selection and hyperparameter optimization in weka. J. Mach. Learn. Res. 18(1), 826–830 (2017). http://dl.acm.org/citation.cfm?id=3122009.3122034

  18. Laboratoire d’Informatique de Grenoble: Twitter data set, http://ama.liglab.fr/resourcestools/datasets/buzz-prediction-in-social-media/, Accessed on March 2018

  19. Maclaurin, D., Duvenaud, D., Adams, R.P.: Gradient-based hyperparameter optimization through reversible learning. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, pp. 2113–2122. ICML 2015, JMLR.org (2015), http://dl.acm.org/citation.cfm?id=3045118.3045343

  20. McNemar, Q.: Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12(2), 153–157 (1947). https://doi.org/10.1007/BF02295996

    Article  Google Scholar 

  21. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965). https://doi.org/10.1093/comjnl/7.4.308

    Article  MathSciNet  Google Scholar 

  22. Nemenyi, P.: Distribution-free multiple comparisons. In: Biometrics. vol. 18, p. 263. INTERNATIONAL BIOMETRIC SOC 1441 I ST, NW, SUITE 700, WASHINGTON, DC 20005–2210 (1962)

    Google Scholar 

  23. Nichol, A., Schulman, J.: Reptile: a Scalable Metalearning Algorithm. ArXiv e-prints (2018)

    Google Scholar 

  24. Pfaffe, P., Tillmann, M., Walter, S., Tichy, W.F.: Online-autotuning in the presence of algorithmic choice. In: 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1379–1388. IEEE (2017)

    Google Scholar 

  25. Sebastião, R., Fernandes, J.M.: Supporting the page-hinkley test with empirical mode decomposition for change detection. In: Kryszkiewicz, M., Appice, A., Ślkezak, D., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2017. LNCS (LNAI), vol. 10352, pp. 492–498. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60438-1_48

    Google Scholar 

  26. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering approaches for large recommender systems. J. Mach. Learn. Res. 10, 623–656 (2009). http://dl.acm.org/citation.cfm?id=1577069.1577091

  27. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: Combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 847–855. KDD 2013. ACM, New York, NY, USA (2013). http://doi.acm.org/10.1145/2487575.2487629

  28. University of California: SGEMM GPU kernel performance data set, https://archive.ics.uci.edu/ml/datasets/SGEMM+GPU+kernel+performance/, Accessed on March 2018

  29. University of California: YearPredictionMSD data set, https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd, Accessed on March 2018

  30. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945). http://www.jstor.org/stable/3001968

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially funded by the ERDF through the COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961, and by National Funds through the FCT as part of project UID/EEA/50014/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedita Malheiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Veloso, B., Gama, J., Malheiro, B. (2018). Self Hyper-Parameter Tuning for Data Streams. In: Soldatova, L., Vanschoren, J., Papadopoulos, G., Ceci, M. (eds) Discovery Science. DS 2018. Lecture Notes in Computer Science(), vol 11198. Springer, Cham. https://doi.org/10.1007/978-3-030-01771-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01771-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01770-5

  • Online ISBN: 978-3-030-01771-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics