Skip to main content

Nanomedicine in Cancer

  • Chapter
  • First Online:
Nanotheranostics for Cancer Applications

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 5))

  • 1103 Accesses

Abstract

This chapter provides a broad overview of the applications of nanotechnology in cancer medicine. The fundamental physics and chemistry of different classes of nanoparticles are first described to detail the origin of their useful emergent properties in the context of current needs in cancer medicine and standard clinical practices. Specific applications focus on cancer therapeutics, cancer imaging, and in vitro diagnostics. In particular, this chapter describes how nanocrystals exhibit unique and tunable interactions with light and magnetic fields that provide new means to both detect and manipulate tumor tissue. The tunable physical structures of nanomaterials also lead to unique interactions with biomolecules, cells, and tissues that have been instrumental in precisely controlling how drugs distribute in the body and localize to solid tumors. Emphasis is given to the potential benefits of theranostic materials that pair therapeutic and diagnostic capabilities to predict and monitor the progress of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitesides, G.M.: Nanoscience, nanotechnology, and chemistry. Small. 1, 172–179 (2005)

    Article  Google Scholar 

  2. Sarikaya, M., Tamerler, C., Jen, A.K.Y., et al.: Molecular biomimetics: nanotechnology through biology. Nat. Mater. 2, 577–585 (2003)

    Article  Google Scholar 

  3. Wong, I.Y., Bhatia, S.N., Toner, M.: Nanotechnology: emerging tools for biology and medicine. Genes Dev. 27, 2397–2408 (2013)

    Article  Google Scholar 

  4. Nie, S.M., Xing, Y., Kim, G.J., et al.: Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 9, 257–288 (2007)

    Article  Google Scholar 

  5. Heath, J.R., Davis, M.E.: Nanotechnology and cancer. Annu. Rev. Med. 59, 251–265 (2008)

    Article  Google Scholar 

  6. Rose, P.G.: Pegylated liposomal doxorubicin: optimizing the dosing schedule in ovarian cancer. Oncologist. 10, 205–214 (2005)

    Article  Google Scholar 

  7. Wang-Gillam, A., Li, C.P., Bodoky, G., et al.: Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet. 387, 545–557 (2016)

    Article  Google Scholar 

  8. Evers P (2015) Nanotechnology in medical applications: The Global Market. BCC Research

    Google Scholar 

  9. Theek, B., Rizzo, L.Y., Ehling, J., et al.: The theranostic path to personalized nanomedicine. Clin. Transl. Imag. 2, 67–76 (2014)

    Article  Google Scholar 

  10. Fornaguera, C., Garcia-Celma, M.J.: Personalized nanomedicine: a revolution at the nanoscale. J. Pers. Med. 7, 12 (2017)

    Article  Google Scholar 

  11. Kobeissy, F.H., Gulbakan, B., Alawieh, A., et al.: Post-Genomics Nanotechnology Is Gaining Momentum: Nanoproteomics and Applications in Life Sciences. OMICS. 18, 111–131 (2014)

    Article  Google Scholar 

  12. Pelaz, B., Charron, G., Pfeiffer, C., et al.: Interfacing engineered nanoparticles with biological systems: anticipating adverse nanoBio interactions. Small. 9, 1573–1584 (2013)

    Article  Google Scholar 

  13. Albanese, A., Tang, P.S., Chan, W.C.W.: The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012)

    Article  Google Scholar 

  14. Owens 3rd, D.E., Peppas, N.A.: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93–102 (2006)

    Article  Google Scholar 

  15. Bazak, R., Houri, M., El Achy, S., et al.: Cancer active targeting by nanoparticles: a comprehensive review of literature. J. Cancer Res. Clin. Oncol. 141, 769–784 (2015)

    Article  Google Scholar 

  16. Blanco, E., Shen, H., Ferrari, M.: Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotech. 33, 941–951 (2015)

    Article  Google Scholar 

  17. Kim, J., Piao, Y., Hyeon, T.: Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 38, 372–390 (2009)

    Article  Google Scholar 

  18. Eustis, S., El-Sayed, M.A.: Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217 (2006)

    Article  Google Scholar 

  19. Jain, P.K., Huang, X., El-Sayed, I.H., et al.: Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics. 2, 107–118 (2007)

    Article  Google Scholar 

  20. Abadeer, N.S., Murphy, C.J.: Recent progress in cancer thermal therapy using gold nanoparticles. J. Phys. Chem. C. 120, 4691–4716 (2016)

    Article  Google Scholar 

  21. Anselmo, A.C., Mitragotri, S.: Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016)

    Article  Google Scholar 

  22. Smith, A.M., Nie, S.M.: Semiconductor nanocrystals: structure, properties, and bandgap engineering. Acc. Chem. Res. 43, 190–200 (2010)

    Article  Google Scholar 

  23. Juzenas, P., Chen, W., Sun, Y.P., et al.: Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev. 60, 1600–1614 (2008)

    Article  Google Scholar 

  24. Gao, J., Gu, H., Xu, B.: Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097–1107 (2009)

    Article  Google Scholar 

  25. Haun, J.B., Yoon, T.-J., Lee, H., et al.: Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 291–304 (2010)

    Article  Google Scholar 

  26. Singh, A., Sahoo, S.K.: Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov. Today. 19, 474–481 (2014)

    Article  Google Scholar 

  27. Peer, D., Karp, J.M., Hong, S., et al.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotech. 2, 751–760 (2007)

    Article  Google Scholar 

  28. Israelachvili, J.N.: Intermolecular and surface forces, 3rd edn. Academic Press, Boston, MA (2011)

    Google Scholar 

  29. Georgakilas, V., Perman, J.A., Tucek, J., et al.: Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115, 4744–4822 (2015)

    Article  Google Scholar 

  30. Li, S.-D., Huang, L.: Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 5, 496–504 (2008)

    Article  Google Scholar 

  31. Florence, A.T.: The oral absorption of micro- and nanoparticulates: Neither exceptional nor unusual. Pharm. Res. 14, 259–266 (1997)

    Article  Google Scholar 

  32. Jain, R.K., Stylianopoulos, T.: Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010)

    Article  Google Scholar 

  33. Komarova, Y., Malik, A.B.: Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu. Rev. Physiol. 72, 463–493 (2010)

    Article  Google Scholar 

  34. Chauhan, V.P., Stylianopoulos, T., Boucher, Y., et al.: Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu. Rev. Chem. Biomol. Eng. 2, 281–298 (2011)

    Article  Google Scholar 

  35. Kievit, F.M., Zhang, M.: Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv. Mater. 23, H217–H247 (2011)

    Article  Google Scholar 

  36. Toutain, P.L., Bousquet-Melou, A.: Plasma clearance. J. Vet. Pharmacol. Ther. 27, 415–425 (2004)

    Article  Google Scholar 

  37. Moeller, M.J., Tenten, V.: Renal albumin filtration: alternative models to the standard physical barriers. Nat. Rev. Neph. 9, 266–277 (2013)

    Article  Google Scholar 

  38. Sorensen, K.K., Simon-Santamaria, J., McCuskey, R.S., et al.: Liver Sinusoidal Endothelial Cells. Compr. Physiol. 5, 1751–1774 (2015)

    Article  Google Scholar 

  39. Zhang, Y.N., Poon, W., Tavares, A.J., et al.: Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release. 240, 332–348 (2016)

    Article  Google Scholar 

  40. Goel, S., Duda, D.G., Xu, L., et al.: Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91, 1071–1121 (2011)

    Article  Google Scholar 

  41. Allen, T.M., Cullis, P.R.: Drug delivery systems: Entering the mainstream. Science. 303, 1818–1822 (2004)

    Article  Google Scholar 

  42. Fang, J., Nakamura, H., Maeda, H.: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011)

    Article  Google Scholar 

  43. Wilhelm, S., Tavares, A.J., Dai, Q., et al.: Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016)

    Article  Google Scholar 

  44. Jain, R.K.: Transport of molecules in the tumor interstitium: a review. Cancer Res. 47, 3039–3051 (1987)

    Google Scholar 

  45. Chinen, A.B., Guan, C.M., Ferrer, J.R., et al.: Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 115, 10530–10574 (2015)

    Article  Google Scholar 

  46. Chauhan, V.P., Jain, R.K.: Strategies for advancing cancer nanomedicine. Nat. Mater. 12, 958–962 (2013)

    Article  Google Scholar 

  47. Chrastina, A., Massey, K.A., Schnitzer, J.E.: Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3, 421–437 (2011)

    Article  Google Scholar 

  48. Oh, P., Testa, J.E., Borgstrom, P., et al.: In vivo proteomic imaging analysis of caveolae reveals pumping system to penetrate solid tumors. Nat. Med. 20, 1062–1068 (2014)

    Article  Google Scholar 

  49. Xu, X., Ho, W., Zhang, X., et al.: Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol. Med. 21, 223–232 (2015)

    Article  Google Scholar 

  50. Duncan, R.: Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer. 6, 688–701 (2006)

    Article  Google Scholar 

  51. Alexis, F., Pridgen, E., Molnar, L.K., et al.: Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008)

    Article  Google Scholar 

  52. Ma, L., Kohli, M., Smith, A.: Nanoparticles for combination drug therapy. ACS Nano. 7, 9518–9525 (2013)

    Article  Google Scholar 

  53. Feldman, E.J., Lancet, J.E., Kolitz, J.E., et al.: First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J. Clin. Oncol. 29, 979–985 (2011)

    Article  Google Scholar 

  54. Chatterjee, D.K., Fong, L.S., Zhang, Y.: Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Deliv. Rev. 60, 1627–1637 (2008)

    Article  Google Scholar 

  55. Fitzpatrick, J.A.J., Andreko, S., Ernst, L.A., et al.: Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett. 9, 2736–2741 (2009)

    Article  Google Scholar 

  56. Tran, S., DeGiovanni, P.J., Piel, B., et al.: Cancer nanomedicine: a review of recent success in drug delivery. Clin. Transl. Med. 6, 44 (2017)

    Article  Google Scholar 

  57. Senzer, N., Nemunaitis, J., Nemunaitis, D., et al.: Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol. Ther. 21, 1096–1103 (2013)

    Article  Google Scholar 

  58. Granot, Y., Peer, D.: Delivering the right message: challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics-An innate immune system standpoint. Semin. Immunol. 34, 68–77 (2017)

    Article  Google Scholar 

  59. Jiang, W., Huang, Y., An, Y., et al.: Remodeling tumor vasculature to enhance delivery of intermediate-sized nanoparticles. ACS Nano. 9, 8689–8696 (2015)

    Article  Google Scholar 

  60. Park, J.W., Kirpotin, D.B., Hong, K., et al.: Tumor targeting using anti-her2 immunoliposomes. J. Control. Release. 74, 95–113 (2001)

    Article  Google Scholar 

  61. Tirkes, T., Hollar, M.A., Tann, M., et al.: Response criteria in oncologic imaging: review of traditional and new criteria. Radiographics. 33, 1323–1341 (2013)

    Article  Google Scholar 

  62. Frangioni, J.V.: New technologies for human cancer imaging. J. Clin. Oncol. 26, 4012–4021 (2008)

    Article  Google Scholar 

  63. Key, J., Leary, J.F.: Nanoparticles for multimodal in vivo imaging in nanomedicine. Int. J. Nanomedicine. 9, 711–726 (2014)

    Google Scholar 

  64. Maenosono, S., Suzuki, T., Saita, S.: Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J. Magn. Magn. Mater. 320, L79–L83 (2008)

    Article  Google Scholar 

  65. O'Farrell, A.C., Shnyder, S.D., Marston, G., et al.: Non-invasive molecular imaging for preclinical cancer therapeutic development. Br. J. Pharmacol. 169, 719–735 (2013)

    Article  Google Scholar 

  66. Dobrucki, L.W., Pan, D.J., Smith, A.M.: Multiscale imaging of nanoparticle drug delivery. Curr. Drug Targets. 16, 560–570 (2015)

    Article  Google Scholar 

  67. de Barros, A.L.B., Tsourkas, A., Saboury, B., et al.: Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res. 2, 39 (2012)

    Article  Google Scholar 

  68. Guerrero, S., Herance, J.R., Rojas, S., et al.: Synthesis and in vivo evaluation of the biodistribution of a 18F-labeled conjugate gold-nanoparticle-peptide with potential biomedical application. Bioconjug. Chem. 23, 399–408 (2012)

    Article  Google Scholar 

  69. Wang, Y., Li, X., Zhou, Y., et al.: Preparation of nanobubbles for ultrasound imaging and intracellular drug delivery. Int. J. Pharm. 384, 148–153 (2010)

    Article  Google Scholar 

  70. Singhal, S., Nie, S.M., Wang, M.D.: Nanotechnology applications in surgical oncology. Annu. Rev. Med. 61, 359–373 (2010)

    Article  Google Scholar 

  71. Kaufmann, B.A., Lindner, J.R.: Molecular imaging with targeted contrast ultrasound. Curr. Opin. Biotechnol. 18, 11–16 (2007)

    Article  Google Scholar 

  72. Vahrmeijer, A.L., Hutteman, M., van der Vorst, J.R., et al.: Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10, 507–518 (2013)

    Article  Google Scholar 

  73. Orbay, H., Bean, J., Zhang, Y., et al.: Intraoperative targeted optical imaging: a guide towards tumor-free margins in cancer surgery. Curr. Pharm. Biotechnol. 14, 733–742 (2014)

    Article  Google Scholar 

  74. Chi, C., Du, Y., Ye, J., et al.: Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics. 4, 1072–1084 (2014)

    Article  Google Scholar 

  75. Sivasubramanian, M., Hsia, Y., Lo, L.W.: Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer. Front. Mol. Biosci. 1, 15 (2014)

    Article  Google Scholar 

  76. Huang, X., El-Sayed, M.A.: Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1, 13–28 (2010)

    Article  Google Scholar 

  77. Meads, C., Auguste, P., Davenport, C., et al.: Positron emission tomography/computerised tomography imaging in detecting and managing recurrent cervical cancer: systematic review of evidence, elicitation of subjective probabilities and economic modelling. Health Technol. Assess. 17, 1–323 (2013)

    Google Scholar 

  78. Ravizzini, G., Turkbey, B., Barrett, T., et al.: Nanoparticles in sentinel lymph node mapping. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 610–623 (2009)

    Article  Google Scholar 

  79. Phillips, E., Penate-Medina, O., Zanzonico, P.B., et al.: Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6, 260ra149 (2014)

    Article  Google Scholar 

  80. Morton, J.G., Day, E.S., Halas, N.J., et al.: Nanoshells for photothermal cancer therapy. Methods Mol. Biol. 624, 101–117 (2010)

    Article  Google Scholar 

  81. Tan, Y.F., Chandrasekharan, P., Maity, D., et al.: Multimodal tumor imaging by iron oxides and quantum dots formulated in poly (lactic acid)-D-alpha-tocopheryl polyethylene glycol 1000 succinate nanoparticles. Biomaterials. 32, 2969–2978 (2011)

    Article  Google Scholar 

  82. Xie, J., Chen, K., Huang, J., et al.: PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials. 31, 3016–3022 (2010)

    Article  Google Scholar 

  83. Grandhi, T.S., Rege, K.: Design, synthesis, and functionalization of nanomaterials for therapeutic drug delivery. Adv. Exp. Med. Biol. 811, 157–182 (2014)

    Article  Google Scholar 

  84. Dobrucki, L.W., Sinusas, A.J.: PET and SPECT in cardiovascular molecular imaging. Nat. Rev. Cardiol. 7, 38–47 (2010)

    Article  Google Scholar 

  85. Dobrucki, L.W., de Muinck, E.D., Lindner, J.R., et al.: Approaches to Multimodality Imaging of Angiogenesis. J. Nucl. Med. 51(Suppl 1), 66S–79S (2010)

    Article  Google Scholar 

  86. Tang, L., Yang, X., Yin, Q., et al.: Investigating the optimal size of anticancer nanomedicine. Proc. Natl. Acad. Sci. U. S. A. 111, 15344–15349 (2014)

    Article  Google Scholar 

  87. Siravegna, G., Marsoni, S., Siena, S., et al.: Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017)

    Article  Google Scholar 

  88. Crowley, E., Di Nicolantonio, F., Loupakis, F., et al.: Liquid biopsy: monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 10, 472–484 (2013)

    Article  Google Scholar 

  89. Elghanian, R., Storhoff, J.J., Mucic, R.C., et al.: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 277, 1078–1081 (1997)

    Article  Google Scholar 

  90. Lee, H., Sun, E., Ham, D., et al.: Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14, 869–874 (2008)

    Article  Google Scholar 

  91. Blanco-Canosa, J.B., Wu, M., Susumu, K., et al.: Recent progress in the bioconjugation of quantum dots. Coord. Chem. Rev. 263, 101–137 (2014)

    Article  Google Scholar 

  92. Zhou, K., Wang, Y., Huang, X., et al.: Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem. Int. Ed. 50, 6109–6114 (2011)

    Article  Google Scholar 

  93. Nguyen, H.H., Park, J., Kang, S., et al.: Surface plasmon resonance: a versatile technique for biosensor applications. Sensors. 15, 10481–10510 (2015)

    Article  Google Scholar 

  94. Cunningham, B.T., Zangar, R.C.: Photonic crystal enhanced fluorescence for early breast cancer biomarker detection. J. Biophotonics. 5(8–9), 617–628 (2012)

    Article  Google Scholar 

  95. Bhattacharya, S., Jang, J., Yang, L., et al.: BioMEMS and nanotechnology-based approaches for rapid detection of biological entities. J. Rapid Meth. Automat. Microbiol. 15, 1–32 (2007)

    Article  Google Scholar 

  96. Das, J., Ivanov, I., Montermini, L., et al.: An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat. Chem. 7, 569–575 (2015)

    Article  Google Scholar 

  97. Zhang, W., Hubbard, A., Brunhoeber, P., et al.: Automated multiplexing quantum dots in situ hybridization assay for simultaneous detection of ERG and PTEN gene status in prostate cancer. J. Mol. Diagn. 15, 754–764 (2013)

    Article  Google Scholar 

  98. Smith, A.M., Dave, S., Nie, S.M., et al.: Multicolor quantum dots for molecular diagnostics of cancer. Expert. Rev. Mol. Diagn. 6, 231–244 (2006)

    Article  Google Scholar 

  99. Nam, J.M., Thaxton, C.S., Mirkin, C.A.: Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 301, 1884–1886 (2003)

    Article  Google Scholar 

  100. Jain, K.K.: Nanotechnology in clinical laboratory diagnostics. Clin. Chim. Acta. 358, 37–54 (2005)

    Article  Google Scholar 

  101. Xie, J., Lee, S., Chen, X.: Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 62, 1064–1079 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, L., Le, P., Kohli, M., Smith, A.M. (2019). Nanomedicine in Cancer. In: Rai, P., Morris, S.A. (eds) Nanotheranostics for Cancer Applications. Bioanalysis, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-01775-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01775-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01773-6

  • Online ISBN: 978-3-030-01775-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics