Skip to main content

Non-preemptive Semantics for Data-Race-Free Programs

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2018 (ICTAC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11187))

Included in the following conference series:

Abstract

It is challenging to reason about the behaviors of concurrent programs because of the non-deterministic interleaving execution of threads. To simplify the reasoning, we propose a non-preemptive semantics for data-race-free (DRF) concurrent programs, where a thread yields the control of the CPU only at certain carefully-chosen program points. We formally prove that DRF concurrent programs behave the same in the standard interleaving semantics and in our non-preemptive semantics. We also propose a novel formulation of data-race-freedom in our non-preemptive semantics, called NPDRF, which is proved equivalent to the standard DRF notion in the interleaving semantics.

This work is supported in part by grants from National Natural Science Foundation of China (NSFC) under Grant Nos. 61502442 and 61632005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this case, we don’t view two concurrent print commands as a data race. Instead, we assume there is an implicit enclosing atomic block for each \(\mathbf print (e)\).

References

  1. Abadi, M., Plotkin, G.: A model of cooperative threads. In: Proceedings of 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, January 2009, pp. 29–40. ACM Press, New York (2009). https://doi.org/10.1145/1480881.1480887

  2. Adve, S.V., Hill, M.D.: Weak ordering: a new definition. In: Proceedings of 17th Annual International Symposium on Computer Architecture, ISCA 1990, Seattle, WA, June 1990, pp. 2–14. ACM Press, New York (1990). https://doi.org/10.1145/325164.325100

  3. Adve, S.V., Hill, M.D.: A unified formalization of four shared-memory models. IEEE Trans. Parallel Distrib. Syst. 4(6), 613–624 (1993). https://doi.org/10.1109/71.242161

    Article  Google Scholar 

  4. von Behren, R., Condit, J., Zhou, F., Necula, G.C., Brewer, E.: Capriccio: scalable threads for internet services. In: Proceedings of 19th ACM Symposium on Operating Systems Principles, SOSP 2003, Bolton Landing, NY, October 2003, pp. 268–281. ACM Press, New York (2003). https://doi.org/10.1145/945445.945471

  5. Beringer, L., Stewart, G., Dockins, R., Appel, A.W.: Verified compilation for shared-memory C. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 107–127. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8_7

    Chapter  Google Scholar 

  6. Boudol, G.: Fair cooperative multithreading. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 272–286. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8_19

    Chapter  Google Scholar 

  7. Collingbourne, P., Donaldson, A.F., Ketema, J., Qadeer, S.: Interleaving and lock-step semantics for analysis and verification of GPU kernels. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 270–289. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_16

    Chapter  MATH  Google Scholar 

  8. Ferreira, R., Feng, X., Shao, Z.: Parameterized memory models and concurrent separation logic. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 267–286. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6_15

    Chapter  MATH  Google Scholar 

  9. Hower, D.R., et al.: Heterogeneous-race-free memory models. In: Architectural Support for Programming Languages and Operating Systems, ASPLOS 2014, Salt Lake City, UT, March 2014, pp. 427–440. ACM Press (2014). https://doi.org/10.1145/2541940.2541981

  10. Kojima, K., Igarashi, A.: A Hoare logic for GPU kernels. ACM Trans. Comput. Log. 18(1), Article No. 3 (2017). https://doi.org/10.1145/3001834

    Article  MathSciNet  Google Scholar 

  11. Li, P., Zdancewic, S.: Combining events and threads for scalable network services implementation and evaluation of monadic, application-level concurrency primitives. In: Proceedings of 28th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2007, San Diego, CA, June 2007, pp. 189–199. ACM Press, New York (2007). https://doi.org/10.1145/1250734.1250756

  12. Loring, M.C., Marron, M., Leijen, D.: Semantics of asynchronous JavaScript. In: Proceedings of 13th ACM SIGPLAN Int. Symposium on Dynamic Languages, DLS 2017, Vancouver, BC, October 2017, pp. 51–62. ACM Press, New York (2017). https://doi.org/10.1145/3133841.3133846

  13. Marino, D., Singh, A., Millstein, T., Musuvathi, M., Narayanasamy, S.: DRFx: a simple and efficient memory model for concurrent programming languages. In: Proceedings of 31st ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2010, Toronto, ON, June 2010, pp. 351–362. ACM Press, New York (2010). https://doi.org/10.1145/1806596.1806636

  14. Vouillon, J.: Lwt: a cooperative thread library. In: Proceedings of the of 2008 ACM SIGPLAN Workshop on ML, ML 2008, Victoria, BC, September 2008, pp. 3–12. ACM Press, New York (2008). https://doi.org/10.1145/1411304.1411307

  15. Yi, J., Disney, T., Freund, S.N., Flanagan, C.: Cooperative types for controlling thread interference in Java. In: Proceedings of 2012 International Symposium on Software Testing and Analysis, ISSTA 2012, Minneapolis, MN, July 2012, pp. 232–242. ACM Press (2012). https://doi.org/10.1145/2338965.2336781

  16. Yi, J., Sadowski, C., Flanagan, C.: Cooperative reasoning for preemptive execution. In: Proceedings of 16th ACM Symposium on Principles and Practice of Parallel Programming, PPoPP 2011, San Antonio, TX, February 2011, pp. 147–156. ACM Press, New York (2011). https://doi.org/10.1145/1941553.1941575

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyang Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, S., Jiang, H., Liang, H., Feng, X. (2018). Non-preemptive Semantics for Data-Race-Free Programs. In: Fischer, B., Uustalu, T. (eds) Theoretical Aspects of Computing – ICTAC 2018. ICTAC 2018. Lecture Notes in Computer Science(), vol 11187. Springer, Cham. https://doi.org/10.1007/978-3-030-02508-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02508-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02507-6

  • Online ISBN: 978-3-030-02508-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics