Skip to main content

Analysis and Estimation of Intra-body Communications Path Loss for Galvanic Coupling

  • Conference paper
  • First Online:
Advances in Body Area Networks I

Part of the book series: Internet of Things ((ITTCC))

Abstract

The desire to have ultra-compact, low power patient monitoring techniques that include intercommunicating wearable and implanted sensors/actuators encourages researchers to develop new communication methods that can replace current Radio Frequency (RF) wireless communication links. RF links require power and area hungry analog circuitry that limits the usability of such systems. This paper evaluates different techniques for Intra-body communication (IBC) where the signal is coupled galvanically to the human tissue. Finite element method (FEM) technique is utilized to determine the path loss of the human channel (human arm model) and to examine the current density distribution in human tissues using both a full and a reduced order model. In addition, we investigate the effect of bone fracture internal fixation implant effect on the channel parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ways to Get Started. https://www.medtronicdiabetes.com/treatments/continuousglucose-monitoring

  2. Teshome, A.K., Kibret, B., Lai, D.T.: Galvanically coupled intrabody communications for medical implants: a unified analytic model. IEEE Trans. Antennas Propag. 64(7), 2989–3002 (2016)

    Article  Google Scholar 

  3. Callejon, M.A., Naranjo-Hernandez, D., Reina-Tosina, J., Roa, L.M.: Distributed circuit modeling of galvanic and capacitive coupling for intrabody communication. IEEE Trans. Biomed. Eng. 59(11), 3263–3269 (2012)

    Article  Google Scholar 

  4. Swaminathan, M., Cabrera, F.S., Pujol, J.S., Muncuk, U., Schirner, G., Chowd-bury, K.R.: Multi-path model and sensitivity analysis for galvanic coupled intra-body communication through layered tissue. IEEE Trans. Biomed. Circuits Syst. 10(2), 339–351 (2016)

    Article  Google Scholar 

  5. Song, Y., Hao, Q., Zhang, K., Wang, M., Chu, Y., Kang, B.: The simulation method of the galvanic coupling intrabody communication with different signal transmission paths. IEEE Trans. Instrum. Meas. 60(4), 1257–1266 (2011)

    Article  Google Scholar 

  6. Hachisuka, K., Terauchi, Y., Kishi, Y., Sasaki, K., Hirota, T., Hosaka, H., Ito, K.: Simplified circuit modeling and fabrication of intrabody communication devices. Sens. Actuators A: Phys. 130, 322–330 (2006)

    Article  Google Scholar 

  7. Ansoft Corporation. Ansoft High Frequency Structure Simulator v10 Users Guide. Ansoft Corporation (2005)

    Google Scholar 

  8. Wegmller, M.S.: Intra-body Communication for biomedical sensor networks. Doctoral Dissertation, ETH Zurich (2007)

    Google Scholar 

  9. Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271 (1996)

    Article  Google Scholar 

  10. NEVA Electromagnetics. https://www.nevaelectromagnetics.com/

  11. Hachisuka, K., Takeda, T., Terauchi, Y., Sasaki, K., Hosaka, H., Itao, K.: Intra-body data transmission for the personal area network. Microsyst. Technol. 11(8–10), 1020–1027 (2005)

    Article  Google Scholar 

  12. Ahlbom, A., Bergqvist, U., Bernhardt, J.H., Cesarini, J.P., Grandolfo, M., Hietanen, M., Swicord, M.L.: Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 74(4), 494–521 (1998)

    Google Scholar 

  13. Khorshid, A. E., Eltawil, A. M., Kurdahi, F.: Intra-body communication model based on variable biological parameters. In: 2015 49th Asilomar Conference on Signals, Systems and Computers, pp. 948–951, Nov 2015. IEEE (2015)

    Google Scholar 

  14. Kibret, B., Seyedi, M., Lai, D.T., Faulkner, M.: Investigation of galvanic-coupled intrabody communication using the human body circuit model. IEEE J. Biomed. Health Inf. 18(4), 1196–1206 (2014)

    Article  Google Scholar 

  15. Hoyt, K., Castaneda, B., Parker, K.J.: 5C-6 muscle tissue characterization using quantitative sonoelastography: Preliminary results. In: In: IEEE Ultra-sonics Symposium, pp. 365–368, Oct 2007. IEEE (2007)

    Google Scholar 

  16. McCartney, W.T.. The design, manufacture and analysis of a new implant for fracture fixation in human and veterinary Orthopaedic surgery: the Bone Fastenerod. Doctoral Dissertation, Dublin City University (2002)

    Google Scholar 

  17. Dynamic Compression Plates, DCP, 3.5 mm. http://www.wheelessonline.com/ortho/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed E. Khorshid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alquaydheb, I.N., Khorshid, A.E., Eltawil, A.M. (2019). Analysis and Estimation of Intra-body Communications Path Loss for Galvanic Coupling. In: Fortino, G., Wang, Z. (eds) Advances in Body Area Networks I. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-02819-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02819-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02818-3

  • Online ISBN: 978-3-030-02819-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics