Skip to main content

User-Based Relocation of Stackable Car Sharing

  • Conference paper
  • First Online:
Smart Cities, Green Technologies, and Intelligent Transport Systems (SMARTGREENS 2017, VEHITS 2017)

Abstract

The relocation of carsharing vehicles is one of the main challenges facing its economic viability, in addition to the operational costs and infrastructure deployment. In this paper, we take advantage of an innovative technological proposal of a one-way carsharing system, to test and validate a user-based relocation strategy. The new technology allows vehicles to be driven in a road train by either an operator (up until eight vehicles) or a customer (up to two). The proposed strategy encourages a customer to take a second vehicle along the way, when he/she happens to be moving from a station with excess of vehicles, to a deficient station. As a case study, we have considered a suburban area of the city of Lyon, of which we have a 2015 household travel survey to build a synthetic population undertaking various activities during a day. Then, we inject this population in a detailed multi-agent and multi-modal transport simulation model, to compare the relocation performance of a lower/upper-bound availability algorithm with three other naively intuitive algorithms. The study shows that: (i) relocation algorithm is very sensitive to the ratio of parking slots to fleet size, and (ii) with the right infrastructure we can relocate one vehicle and generate at least one additional trip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://data.grandlyon.com/.

  2. 2.

    The rate of change was computed following the traditional formula: \(\frac{1.7-5.1}{120-10}\approx \frac{4.0-7.3}{120-10}=-0.03\%/\mathrm{min}\).

References

  1. de Almeida Correia, G.H., Antunes, A.P.: Optimization approach to depot location and trip selection in one-way carsharing systems. Transp. Res. Part E: Logist. Transp. Rev. 48(1), 233–247 (2012)

    Article  Google Scholar 

  2. Balmer, M., Cetin, N., Nagel, K., Raney, B.: Towards truly agent-based traffic and mobility simulations. In: Proceedings of AAMS 2004, pp. 60–67. IEEE Computer Society (2004)

    Google Scholar 

  3. Barth, M., Shaheen, S.: Shared-use vehicle systems: framework for classifying carsharing, station cars, and combined approaches. Transp. Res. Rec.: J. Transp. Res. Board 1791, 105–112 (2002)

    Article  Google Scholar 

  4. Barth, M., Todd, M.: Simulation model performance analysis of a multiple station shared vehicle system. Transp. Res. Part C: Emerg. Technol. 7(4), 237–259 (1999)

    Article  Google Scholar 

  5. Barth, M., Todd, M., Xue, L.: User-based vehicle relocation techniques for multiple-station shared-use vehicle systems (2004)

    Google Scholar 

  6. Biondi, E., Boldrini, C., Bruno, R.: Optimal deployment of stations for a car sharing system with stochastic demands: a queueing theoretical perspective. In: The 19th IEEE Intelligent Transportation Systems Conference, pp. 1–7. IEEE (2016)

    Google Scholar 

  7. Birnschein, T., Kirchner, F., Girault, B., Yüksel, M., Machowinski, J.: An innovative, comprehensive concept for energy efficient electric mobility-EO smart connecting car. In: Proceedings of IEEE ENERGYCON 2012, pp. 1028–1033. IEEE (2012)

    Google Scholar 

  8. Boldrini, C., Bruno, R., Conti, M.: Characterising demand and usage patterns in a large station-based car sharing system. In: The 2nd IEEE INFOCOM Workshop on Smart Cities and Urban Computing (2016)

    Google Scholar 

  9. Bonsall, P.: Microsimulation: its application to car sharing. Transp. Res. Part A: Gen. 16(5), 421–429 (1982)

    Article  Google Scholar 

  10. Boyacı, B., Zografos, K.G., Geroliminis, N.: An optimization framework for the development of efficient one-way car-sharing systems. Eur. J. Oper. Res. 240(3), 718–733 (2015)

    Article  MathSciNet  Google Scholar 

  11. Ciari, F., Schuessler, N., Axhausen, K.W.: Estimation of carsharing demand using an activity-based microsimulation approach: model discussion and some results. Int. J. Sustain. Transp. 7(1), 70–84 (2013)

    Article  Google Scholar 

  12. Clemente, M., Fanti, M.P., Mangini, A.M., Ukovich, W.: The vehicle relocation problem in car sharing systems: modeling and simulation in a petri net framework. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 250–269. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_14

    Chapter  MATH  Google Scholar 

  13. ESPRIT: Esprit h2020 eu project - easily distributed personal rapid transit (2015). http://www.esprit-transport-system.eu/. Accessed 12 Dec 2016

  14. Farahani, R.Z., Asgari, N., Heidari, N., Hosseininia, M., Goh, M.: Covering problems in facility location: a review. Comput. Indus. Eng. 62, 368–407 (2012)

    Article  Google Scholar 

  15. Febbraro, A., Sacco, N., Saeednia, M.: One-way carsharing: solving the relocation problem. Transp. Res. Rec.: J. Transp. Res. Board 2319, 113–120 (2012)

    Article  Google Scholar 

  16. George, D.K., Xia, C.H.: Fleet-sizing and service availability for a vehicle rental system via closed queueing networks. Eur. J. Oper. Res. 211(1), 198–207 (2011)

    Article  MathSciNet  Google Scholar 

  17. Hampshire, R., Gaites, C.: Peer-to-peer carsharing: market analysis and potential growth. Transp. Res. Rec.: J. Transp. Res. Board 2217, 119–126 (2011)

    Article  Google Scholar 

  18. Herrmann, S., Schulte, F., Voß, S.: Increasing acceptance of free-floating car sharing systems using smart relocation strategies: a survey based study of car2go Hamburg. In: González-Ramírez, R.G., Schulte, F., Voß, S., Ceroni Díaz, J.A. (eds.) ICCL 2014. LNCS, vol. 8760, pp. 151–162. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11421-7_10

    Chapter  Google Scholar 

  19. Jorge, D., Correia, G.H., Barnhart, C.: Comparing optimal relocation operations with simulated relocation policies in one-way carsharing systems. IEEE Trans. Intell. Transp. Syst. 15(4), 1667–1675 (2014)

    Article  Google Scholar 

  20. Kek, A., Cheu, R., Chor, M.: Relocation simulation model for multiple-station shared-use vehicle systems. Transp. Res. Rec.: J. Transp. Res. Board 1986, 81–88 (2006)

    Article  Google Scholar 

  21. Kek, A.G., Cheu, R.L., Meng, Q., Fung, C.H.: A decision support system for vehicle relocation operations in carsharing systems. Transp. Res. Part E: Logist. Transp. Rev. 45(1), 149–158 (2009)

    Article  Google Scholar 

  22. Laarabi, H.M., Boldrini, C., Bruno, R., Davidson, H.P., Peter: on the performance of a one-way car sharing system in suburban areas: a real-world use case. In: 3rd International Conference on Vehicle Technology and Intelligent Transport Systems, vol. 1, pp. 102–110. Scitepress (2017)

    Google Scholar 

  23. Laarabi, M.H., Bruno, R.: A generic software framework for carsharing modelling based on a large-scale multi-agent traffic simulation platform. In: Namazi-Rad, M.-R., Padgham, L., Perez, P., Nagel, K., Bazzan, A. (eds.) ABMUS 2016. LNCS (LNAI), vol. 10051, pp. 88–111. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51957-9_6

    Chapter  Google Scholar 

  24. Mitchell, W.J., Borroni-Bird, C.E., Burns, L.D.: Reinventing the Automobile: Personal Urban Mobility for the 21st Century. MIT Press, Cambridge (2010)

    Google Scholar 

  25. Nair, R., Miller-Hooks, E.: Fleet management for vehicle sharing operations. Transp. Sci. 45(4), 524–540 (2011)

    Article  Google Scholar 

  26. Pavone, M., Smith, S.L., Frazzoli, E., Rus, D.: Robotic load balancing for mobility-on-demand systems. Int. J. Robot. Res. 31(7), 839–854 (2012)

    Article  Google Scholar 

  27. Uesugi, K., Mukai, N., Watanabe, T.: Optimization of vehicle assignment for car sharing system. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007. LNCS (LNAI), vol. 4693, pp. 1105–1111. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74827-4_138

    Chapter  Google Scholar 

  28. Vairani, F.: bitCar: design concept for a collapsible stackable city car. Ph.D. thesis, Massachusetts Institute of Technology (2009)

    Google Scholar 

  29. Weikl, S., Bogenberger, K.: Relocation strategies and algorithms for free-floating car sharing systems. IEEE Intell. Transp. Syst. Mag. 5(4), 100–111 (2013)

    Article  Google Scholar 

  30. Zhang, R., Pavone, M.: Control of robotic mobility-on-demand systems: a queueing-theoretical perspective. Int. J. Robot. Res. 35(1–3), 186–203 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been partially funded by the ESPRIT project. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 653395.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitam Laarabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laarabi, H., Boldrini, C., Bruno, R., Porter, H., Davidson, P. (2019). User-Based Relocation of Stackable Car Sharing. In: Donnellan, B., Klein, C., Helfert, M., Gusikhin, O., Pascoal, A. (eds) Smart Cities, Green Technologies, and Intelligent Transport Systems. SMARTGREENS VEHITS 2017 2017. Communications in Computer and Information Science, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-030-02907-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02907-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02906-7

  • Online ISBN: 978-3-030-02907-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics