Skip to main content

SARFM: A Sentiment-Aware Review Feature Mapping Approach for Cross-Domain Recommendation

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2018 (WISE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11234))

Included in the following conference series:

Abstract

Cross-domain algorithms which aim to transfer knowledge available in the source domains to the target domain are gradually becoming more attractive as an effective approach to help improve quality of recommendations and to alleviate the problems of cold-start and data sparsity in recommendation systems. However, existing works on cross-domain algorithm mostly consider ratings, tags and the text information like reviews, and don’t take advantage of the sentiments implicated in the reviews efficiently, especially the negative sentiment information which is easy to be weakened during the process of transferring. In this paper, we propose a sentiment-aware review feature mapping framework for cross-domain recommendation, called SARFM. The proposed SARFM framework applies deep learning algorithm SDAE (Stacked Denoising Autoencoders) to model the Sentiment-Aware Review Feature (SARF) of users, and transfers SARF via a multi-layer perceptron to capture the nonlinear mapping function across domains. We evaluate and compare our framework on a set of Amazon datasets. Extensive experiments on each cross-domain recommendation scenarios are conducted to prove the high accuracy of our proposed SARFM framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cremonesi, P., Tripodi, A., Turrin, R.: Cross-domain recommender systems. In: ICDM 2012, pp. 496–503 (2012)

    Google Scholar 

  2. Fang, Z., Gao, S., Li, B., Li, J.: Cross-domain recommendation via tag matrix transfer. In: ICDM 2015, pp. 1235–1240 (2015)

    Google Scholar 

  3. Chen, W., Hsu, W., Lee, M.L.: Making recommendations from multiple domains. In: KDD 2013, pp. 892–900 (2013)

    Google Scholar 

  4. Yang, D., He, J., Qin, H., Xiao, Y., Wang, W.: A graph-based recommendation across heterogeneous domains. In: CIKM 2015, pp. 463–472 (2015)

    Google Scholar 

  5. Li, B., Yang, Q., Xue, X.: Transfer learning for collaborative filtering via a rating-matrix generative model. In: ICML 2009, pp. 617–624 (2009)

    Google Scholar 

  6. Ruck, D.W., Rogers, S.K., Kabrisky, M., Oxley, M.E., Suter, B.W.: The multilayer perceptron as an approximation to a Bayes optimal discriminant function. IEEE Trans. Neural Netw. 1(4), 296–298 (1990)

    Article  Google Scholar 

  7. Vincent, P., Larochelle, H., Lajoie, I., et al.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Ren, S., Gao, S., Liao, J., Guo, J.: Improving cross-domain recommendation through probabilistic cluster-level latent factor model. In: AAAI 2015, pp. 4200–4201 (2015)

    Google Scholar 

  9. Gao, S., Luo, H., Chen, D., Li, S., Gallinari, P., Guo, J.: Cross-domain recommendation via cluster-level latent factor model. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8189, pp. 161–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40991-2_11

    Chapter  Google Scholar 

  10. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  11. He, R., Mcauley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: WWW 2016, pp. 507–517 (2016)

    Google Scholar 

  12. He, X., Liao, et al.: Neural collaborative filtering. In: WWW 2017. pp. 173–182 (2017)

    Google Scholar 

  13. Pan, W., Liu, N.N., Xiang, E.W., Yang, Q.: Transfer learning to predict missing ratings via heterogeneous user feedbacks. In: AAAI 2011, pp. 2318–2323 (2011)

    Google Scholar 

  14. Singh, A.P., Kumar, G., Gupta, R.: Relational learning via collective matrix factorization. In: KDD 2008, pp. 650–658 (2008)

    Google Scholar 

  15. Man, T., Shen, H., Jin, X., Cheng, X.: Cross-domain recommendation: an embedding and mapping approach. In: IJCAI 2017, pp. 2464–2470 (2017)

    Google Scholar 

  16. Xin, X., Liu, Z., Lin, C., Huang, H., Wei, X., Guo, P.: Cross-domain collaborative filtering with review text. In: IJCAI 2015, pp. 1827–1833 (2015)

    Google Scholar 

  17. Diao, Q., Qiu, M., Wu, C.Y., Smola, A.J., et al.: Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS). In: KDD 2014, pp. 193–202 (2014)

    Google Scholar 

  18. Zhang, Y., Lai, G., Zhang, M., et al.: Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In: SIGIR 2014, pp. 83–92 (2014)

    Google Scholar 

  19. Li, F., Wang, S., Liu, S., Zhang, M.: SUIT: a supervised user-item based topic model for sentiment analysis. In: AAAI 2014, pp. 1636–1642 (2014)

    Google Scholar 

  20. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: explicit invariance during feature extraction. In: ICML 2011, pp. 833–840 (2011)

    Google Scholar 

  21. Chen, M., Xu, Z., Weinberger, K., Sha, F.: Marginalized denoising autoencoders for domain adaptation. Computer Science (2012)

    Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS 2012, pp. 1097–1105 (2012)

    Google Scholar 

  23. Graves, A., Fernández, S., et al.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: ICML, pp. 369–376 (2006)

    Google Scholar 

  24. Taboada, M., Brooke, J., Tofiloski, M., et al.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)

    Article  Google Scholar 

  25. Wang, H., Wang, N., Yeung, D. Y.: Collaborative deep learning for recommender systems. In: SIGKDD 2015, pp. 1235–1244 (2015)

    Google Scholar 

Download references

Acknowledgments

This work is supported by NSF of Shandong, China (Nos. ZR2017MF065, ZR2018MF014), the Science and Technology Development Plan Project of Shandong, China (No. 2016GGX101034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Peng, Z., Hu, Y., Hong, X. (2018). SARFM: A Sentiment-Aware Review Feature Mapping Approach for Cross-Domain Recommendation. In: Hacid, H., Cellary, W., Wang, H., Paik, HY., Zhou, R. (eds) Web Information Systems Engineering – WISE 2018. WISE 2018. Lecture Notes in Computer Science(), vol 11234. Springer, Cham. https://doi.org/10.1007/978-3-030-02925-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02925-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02924-1

  • Online ISBN: 978-3-030-02925-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics