Skip to main content

Operator Interfaces for Safe Robotic Surgery

  • Chapter
  • First Online:
The Route to Patient Safety in Robotic Surgery

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 126))

  • 529 Accesses

Abstract

The main goal of minimally invasive surgery robotic systems is to mimic open surgery and to overcome the drawbacks of minimally invasive surgery (MIS) such as limited dexterity, fulcrum effect, difficult hand eye coordination, etc. Therefore, some of the key requirements for surgical robots with focus on surgeon interface are dexterity and degrees of freedom similar to open surgery, intuitive control of instruments, alignment of the surgeon’s eyes and hands over the area of interest, etc.

Contributor: EPFL, FORCE, HOLO

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EPFL, Deliverable 6.1: Report on operator interface specifications, SAFROS Project Deliverable

    Google Scholar 

  2. http://www.yawlfoundation.org/

  3. Intuitive surgical. http://www.intuitivesurgical.com/

  4. http://www.mimic.ws/

  5. http://www.holografika.com/

  6. http://www.chai3d.org/

  7. Beck, L., Wolter, M., Mungard, N.F., Vohn, R., Staedtgen, M., Kuhlen, T., Sturm, W.: Evaluation of spatial processing in virtual reality using functional magnetic resonance imaging (FMRI). Cyberpsychol. Behav. Soc. Netw. 13(2), 211–215 (2010)

    Article  Google Scholar 

  8. Hoffman, D.M., Girshick, A.R., Akeley, K., Banks, M.S.: Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8(3), 33 (2008)

    Article  Google Scholar 

  9. Swan, J.E., Jones, A., Kolstad, E., Livingston, M.A., Smallman, H.S.: Egocentric depth judgments in optical, see-through augmented reality. Vis. Comput. Graph. IEEE Trans. 13(3), 429–442 (2007)

    Article  Google Scholar 

  10. Naceri, A., Chellali, R., Dionnet, F., Toma, S.: Depth perception within virtual environments: comparison between two display technologies. Int. J. Adv. Intell. Syst. 3(1–2), 51–64 (2010)

    Google Scholar 

  11. Gruber, H.E.: The relation of perceived size to perceived distance. Am. J. Psychol. 411–426 (1954)

    Article  Google Scholar 

  12. Berryhill, M.E., Fendrich, R., Olson, I.R.: Impaired distance perception and size constancy following bilateral occipitoparietal damage. Exp. Brain Res. 194(3), 381–393 (2009)

    Article  Google Scholar 

  13. Armbrüster, C., Wolter, M., Kuhlen, T., Spijkers, W., Fimm, B.: Depth perception in virtual reality: distance estimations in peri-and extrapersonal space. Cyberpsychol. Behav. 11(1), 9–15 (2008)

    Article  Google Scholar 

  14. Sengül, A., Barsi, A., Ribeiro, D., Bleuler, H.: Role of holographic displays and stereovision displays in patient safety and robotic surgery. In: Intelligent Autonomous Systems, vol. 12, pp. 143–154. Springer, Berlin (2013)

    Chapter  Google Scholar 

  15. http://www.mimicsimulation.com/products/dv-trainer/

  16. http://www.emagin.com/

  17. http://www.precisionmicrodrives.com/

  18. http://www.ni.com

  19. Maravita, A., Iriki, A.: Tools for the body (schema). Trends Cogn. Sci. 8(2), 79–86 (2004)

    Article  Google Scholar 

  20. Holmes, N.P.: Does tool use extend peripersonal space? a review and re-analysis. Exp. Brain Res. 218(2), 273–282 (2012)

    Article  Google Scholar 

  21. SengĂĽl, A., Van Elk, M., Rognini, G., Aspell, J.E., Bleuler, H., Blanke, O.: Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task. PLoS One 7(12), e49473 (2012)

    Article  Google Scholar 

  22. Jay, C., Glencross, M., Hubbold, R.: Modeling the effects of delayed haptic and visual feedback in a collaborative virtual environment. ACM Trans. Comput. Hum. Interact. (TOCHI) 14(2), 8 (2007)

    Article  Google Scholar 

  23. Sengul, A., Rivest, F., Van Elk, M., Blanke, O., Bleuler, H.: Visual and force feedback time-delays change telepresence: quantitative evidence from crossmodal congruecy task. In: World Haptics Conference (WHC) 2013, pp. 577–582. IEEE (2013)

    Google Scholar 

  24. Holmes, N.P., Calvert, G.A., Spence, C.: Extending or projecting peripersonal space with tools? multisensory interactions highlight only the distal and proximal ends of tools. Neurosci. Lett. 372(1), 62–67 (2004)

    Article  Google Scholar 

  25. Maravita, A., Clarke, K., Husain, M., Driver, J.: Active tool use with the contralesional hand can reduce cross-modal extinction of touch on that hand. Neurocase 8(6), 411–416 (2002)

    Article  Google Scholar 

  26. Gharagozloo, F., Najam, F.: Robotic Surgery. McGraw-Hill Medical (2009)

    Google Scholar 

  27. Shore, D.I., Barnes, M.E., Spence, C.: Temporal aspects of the visuotactile congruency effect. Neurosci. Lett. 392(1), 96–100 (2006)

    Article  Google Scholar 

  28. Pavani, F., Spence, C., Driver, J.: Visual capture of touch: out-of-the-body experiences with rubber gloves. Psychol. Sci. 11(5), 353–359 (2000)

    Article  Google Scholar 

  29. Maravita, A., Spence, C., Kennett, S., Driver, J.: Tool-use changes multimodal spatial interactions between vision and touch in normal humans. Cognition 83(2), B25–B34 (2002)

    Article  Google Scholar 

  30. Sengül, A., Rognini, G., van Elk, M., Aspell, J.E., Bleuler, H., Blanke, O.: Force feedback facilitates multisensory integration during robotic tool use. Exp. Brain Res. 227(4), 497–507 (2013)

    Article  Google Scholar 

  31. Bassolino, M., Serino, A., Ubaldi, S., Làdavas, E.: Everyday use of the computer mouse extends peripersonal space representation. Neuropsychologia 48(3), 803–811 (2010)

    Article  Google Scholar 

  32. SengĂĽl, A.: Cognitive neuroscience based design guidelines for surgical robotics, Ph.D. dissertation (2013)

    Google Scholar 

  33. Vaucher, J., Bleuler, H.: Lifeguard for robotic surgery assistance ligra: an interactive platform centralizing information and control in robotic surgery. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, vol. 2013, pp. 4759–4762 (2012)

    Google Scholar 

  34. Vaucher, J., Bleuler, H., Oleari, E., Morandi, A., Verga, M., Sanna, A.: New horizons for patient safety: ligra (life guard for robotic surgery assistance), an interactive platform centralizing information and control robotic surgery operating rooms. In: 2013 IEEE International Conference on Healthcare Informatics (ICHI), pp. 361–366. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Fiorini .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grespan, L., Fiorini, P., Colucci, G. (2019). Operator Interfaces for Safe Robotic Surgery. In: The Route to Patient Safety in Robotic Surgery. Springer Tracts in Advanced Robotics, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-030-03020-9_10

Download citation

Publish with us

Policies and ethics