Skip to main content

Genetics and Genomics of Carrot Sugars and Polyacetylenes

  • Chapter
  • First Online:
The Carrot Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Carrot root carbohydrates, composed mainly of reducing and non-reducing free sugars, influence flavor, total dissolved solids and dry mater content, all quality traits for fresh-market and processing carrots. In the last decades, important advances have been made in biochemistry, physiology and genetics of carrot sugar metabolism. Several enzymes involved in sucrose metabolism and their corresponding genes have been isolated and functionally characterized, increasing our understanding of their individual roles and of their interactions in complex regulatory systems that influence major plant physiological processes, including partitioning of photo-assimilates, plant growth and storage of different sugar types in the carrot taproot. Polyacetylenes represent a large group of non-volatile lipid compounds produced primarily by members of the Apiaceae family. The major carrot polyacetylenes have been extensively studied with regard to their analytical identification and elucidation of their chemical structures as well as their biological activities, which have revealed numerous health-promoting properties for these compounds. Very recently, with the publication of the carrot genome sequence and related genomic and transcriptomic sequence resources, key genes and enzymes involved in the biosynthesis of carrot polyacetylenes were discovered. In this chapter, advances in genetics and genomics of carrot sugars and polyacetylenes were reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alabran DM, Mabrouk AF (1973) Carrot flavor, sugars and free nitrogenous compounds in fresh carrots. J Agric Food Chem 21:205–208

    Article  CAS  Google Scholar 

  • Alasalvar C, Grigor JM, Zhang D, Quantick PC, Shahidi F (2001) Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J Agric Food Chem 49:1410–1416

    Article  CAS  PubMed  Google Scholar 

  • Appendino G, Tagliapietra S, Nano GM (1993) An anti-platelet acetylene from the leaves of Ferula communis. Fitoterapia 64:179

    CAS  Google Scholar 

  • Ayoub N, Al-Azizi M, König W, Kubeczka KH (2006) Essential oils and a novel polyacetylene from Eryngium yuccifolium Michaux. (Apiaceae). Flavour Fragrance J 21:864–868

    Article  CAS  Google Scholar 

  • Badami RC, Patil KB (1980) Structure and occurrence of unusual fatty acids in minor seed oils. Prog Lipid Res 19:119–153

    Article  CAS  PubMed  Google Scholar 

  • Bajaj KL, Kaur G, Sukhija BS (1980) Chemical composition and some plant characteristics in relation to quality of some promising cultivars of carrot (Daucus carota L.). Qual Plant Food Human Nutr 30:97–107

    Article  CAS  Google Scholar 

  • Baranska M, Schulz H (2005) Spatial tissue distribution of polyacetylenes in carrot root. Analyst 130:855–859

    Article  CAS  PubMed  Google Scholar 

  • Baranska M, Schulz H, Baranski R, Nothnagel T, Christensen LP (2005) In situ simultaneous analysis of polyacetylenes, carotenoids and polysaccharides in carrot roots. J Agric Food Chem 53:6565–6571

    Article  CAS  PubMed  Google Scholar 

  • Baranski R, Allender C, Klimek-Chodacka M (2012) Towards better tasting and more nutritious carrots: carotenoid and sugar content variation in carrot genetic resources. Food Res Int 47:182–187

    Article  CAS  Google Scholar 

  • Barley GC, Ewart J, Thaller V (1988) Crepenynate as a precursor of falcarinol in carrot tissue culture. Bioact Mol 7:85–91

    CAS  Google Scholar 

  • Barrero AF, Herrador MM, Akssira M, Arteaga P, Romera JL (1999) Lignans and polyacetylenes from Bupleurum acutifolium. J Nat Prod 62:946–948

    Article  CAS  PubMed  Google Scholar 

  • Bohlman F (1988) Naturally-occurring acetylenes. In: Lam J, Breteler H, Hansen L (eds) Chemistry and biology of naturally-occurring acetylenes and related compounds (NOARC). Elsevier, Amsterdam, pp 1–19

    Google Scholar 

  • Busta L, Yim W, LaBrant EW, Wang P, Grimes L, Malyszka K, Cushman JC, Santos P, Kosma DK, Cahoon EB (2018) Identification of genes encoding enzymes catalyzing the early steps of carrot polyacetylene biosynthesis. Plant Physiol. https://doi.org/10.1104/pp.18.01195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahoon EB, Schnurr JA, Huffman EA, Minto RE (2003) Fungal responsive fatty acid acetylenases occur widely in evolutionarily distant plant families. Plant J 34:671–683

    Article  CAS  PubMed  Google Scholar 

  • Carlton BC, Peterson CE (1963) Breeding carrots for sugar and dry matter content. Proc Am Soc Hort Sci 82:332–340

    CAS  Google Scholar 

  • Chauhan RS, Nautiyal MC, Tava A, Mella M (2012) Chemical composition of the volatile oil from the roots of Selinum tenuifolium Wall. Helv Chim Acta 95:780–787

    Article  CAS  Google Scholar 

  • Christensen LP (2011) Aliphatic C17-polyacetylenes of the falcarinol type as potential health promoting compounds in food plants of the Apiaceae family. Recent Pat Food Nutr Agric 3:64–77

    Article  CAS  PubMed  Google Scholar 

  • Christensen LP, Brandt K (2006) Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. J Pharm Biomed Anal 41:683–693

    Article  CAS  PubMed  Google Scholar 

  • Czepa A, Hofmann T (2003) Structural and sensory characterization of compounds contributing to the bitter off-taste of carrots (Daucus carota L.) and carrot puree. J Agric Food Chem 51:3865–3873

    Article  CAS  PubMed  Google Scholar 

  • Czepa A, Hofmann T (2004) Quantitative studies and sensory analyses on the influence of cultivar, spatial tissue distribution and industrial processing on the bitter off-taste of carrots (Daucus carota L.) and carrot products. J Agric Food Chem 52:4508–4514

    Article  CAS  PubMed  Google Scholar 

  • Copeland L (1990) Enzymes of sucrose metabolism. In: Lea PJ (ed) Methods in plant biochemistry: enzymes of primary metabolism, vol 3. Academic Press, New York, pp 73–84

    Chapter  Google Scholar 

  • Dawid C, Dunemann F, Schwab W, Nothnagel T, Hofmann T (2015) Bioactive C17-polyacetylenes in carrots (Daucus carota L.): current knowledge and future perspectives. J Agric Food Chem 63:9211–9222

    Article  CAS  PubMed  Google Scholar 

  • Freeman RE, Simon PW (1983) Evidence for simple genetic control of sugar type in carrot (Daucus carota L.). J Am Soc Hort Sci 108:50–54

    Google Scholar 

  • Garrod B, Lewis BG (1979) Location of the antifungal compound falcarindiol in carrot root tissue. Trans Br Mycol Soc 72:515–517

    Article  CAS  Google Scholar 

  • Govindan G, Sambandan TG, Govindan M, Sinskey A, Vanessendelft J, Adenan I, Rha CK (2007) A bioactive polyacetylene compound isolated from Centella asiatica. Planta Med 73:597–599

    Article  CAS  PubMed  Google Scholar 

  • Grzebelus D, Yau YY, Simon PW (2006) Master: a novel family of PIF/Harbinger-like transposable elements identified in carrot (Daucus carota L.). Mol Genet Genomics 275:450–459

    Article  CAS  PubMed  Google Scholar 

  • Hasselbring H (1927) Carbohydrate transformation in carrots during storage. Plant Physiol 2:225–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen L, Boll PM (1986) Polyacetylenes in Araliaceae: Their chemistry, biosynthesis and biological significance. Phytochem 25:285–293

    Article  CAS  Google Scholar 

  • Hausen BM, Bröhan J, König WA, Faasch H, Hahn H, Bruhn G (1987) Allergic and irritant contact dermatitis from falcarinol and didehydrofalcarinol in common ivy (Hedera helix L.). Contact Dermatitis 17:1–9

    Article  CAS  PubMed  Google Scholar 

  • Huang HQ, Zhang X, Shen YH, Su J, Liu XH, Tian JM, Lin J, Shan L, Zhang WD (2009) Polyacetylenes from Bupleurum longiradiatum. J Nat Prod 72:2153–2157

    Article  CAS  PubMed  Google Scholar 

  • Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:199–222

    Article  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D et al (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nature Genet 48:657–666

    Article  CAS  PubMed  Google Scholar 

  • Iorizzo M, Cavagnaro PF, Bostan H et al (2018) A cluster of MYB transcription factors regulates anthocyanin biosynthesis in carrot (Daucus carota L.) root and petiole. Front Plant Sci. Accepted

    Google Scholar 

  • Jones ERH, Safe S, Thaller V (1966) Natural acetylene. Part XXIII. A C18 polyacetylenic keto aldehyde related to falcarinone from an umbellifer (Pastinaca sativa L.). J Chem Soc C Org

    Google Scholar 

  • Kawazu K, Noguchi H, Fujishita K, Iwasa J, Egawa H (1973) Two new antifungal compounds from Dendropanax trifidus. Tetrahedron Lett 14:3131–3132

    Article  Google Scholar 

  • Klann EM, Chetelat RT, Bennett AB (1993) Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit. Plant Physiol 103:863–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidmose U, Hansen SL, Christensen LP, Edelenbos M, Larsen E, Norbaek R (2004) Effect of genotype, root size, storage, and processing on bioactive compounds in organically grown carrots (Daucus carota). J Food Sci 69:388–394

    Article  Google Scholar 

  • Killeen DP, Sansom CE, Lill RE, Eason JR, Gordon KC, Perry NB (2013) Quantitative Raman spectroscopy for the analysis of carrot bioactivities. J Agric Food Chem 61:2701–2708

    Article  CAS  PubMed  Google Scholar 

  • Kirsch C, Hahlbrock K, Somssich IE (1997) Rapid and transient induction of a parsley microsomal A12 fatty acid desaturase mRNA by fungal elicitor. Plant Physiol 115:283–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjellenberg L, Johansson E, Gustavsson KE, Olsson ME (2010) Effects of harvesting date and storage on the amounts of polyacetylenes in carrots, Daucus carota. J Agric Food Chem 58:11703–11708

    Article  CAS  PubMed  Google Scholar 

  • Kurimoto SI, Okasaka M, Kashiwada Y, Kodzhimatov OK, Takaishi Y (2010) A C14-polyacetylenic glucoside with an α-pyrone moiety and four C10-polyacetylenic glucosides from Mediasia macrophylla. Phytochemistry 71:688–692

    Article  CAS  PubMed  Google Scholar 

  • Kuo S-C, Teng C-M, Lee J-C, Ko F-N, Chen S-C, Wu T-S (1990) Antiplatelet components in Panax ginseng. Planta Med 56:164–167

    Article  CAS  PubMed  Google Scholar 

  • Laurière C, Laurière M, Sturm A, Faye L, Chrispeels MJ (1988) Characterization of β-fructosidase, an extracellular glycoprotein of carrot cells. Biochimie 70:1483–1491

    Article  PubMed  Google Scholar 

  • Lee HS, Sturm A (1996) Purification and characterization of neutral and alkaline invertase from carrot. Plant Physiol 112:1513–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Kunert O, Blunder M, Fakhrudin N, Noha SM, Malainer C, Schinkovitz A, Heiss EH, Atanosov AG, Kollroser M, Schuster D, Dirsch VM, Bauer R (2014) Polyyne hybrid compounds from Notopterygium incisum with peroxisome proliferator activated receptor gamma agonistic effects. J Nat Prod 77:2513–2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YJ, Wang GL, Ma J, Xu ZS, Wang F, Xiong AS (2018) Transcript profiling of sucrose synthase genes involved in sucrose metabolism among four carrot (Daucus carota L.) cultivars reveals distinct patterns. BMC Plant Biol 18:8

    Google Scholar 

  • Lund ED (1992) Polyacetylenic carbonyl compounds in carrots. Phytochemistry 31:3621–3623

    Article  CAS  Google Scholar 

  • Lund DL, White JM (1990) Polyacetylenes in normal and water-stressed “Orlando-gold” carrots (Daucus carota). J Sci Food Agric 51:507–516

    Article  CAS  Google Scholar 

  • Lorenz K, Lienhard S, Sturm A (1995) Structural organization and differential expression of carrot, β-fructofuranosidase genes: identification of a gene coding for a flower bud-specific isozyme. Plant Mol Biol 28:189–194

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga H, Katano M, Yamamoto H, Mori M, Takata K (1989) Studies on the panaxytriol of Panax ginseng C. A. Meyer. Isolation, determination and antitumor activity. Chem Pharm Bull 37:1279–1281

    Article  CAS  Google Scholar 

  • Matsunaga H, Katano M, Yamamoto H, Fujito H, Mori M, Takata K (1990) Cytotoxic activity of polyacetylene compounds in Panax ginseng C. A. Meyer. Chem Pharm Bull 38:3480–3482

    Article  CAS  Google Scholar 

  • Metzger BT, Barnes DM (2009) Polyacetylene diversity and bioactivity in orange market and locally grown colored carrots (Daucus carota L.). J Agric Food Chem 57:11134–11139

    Article  CAS  PubMed  Google Scholar 

  • Metzger BT, Barnes DM, Reed JD (2008) Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells. J Agric Food Chem 56:3554–3560

    Article  CAS  PubMed  Google Scholar 

  • Minto RE, Blacklock BJ (2008) Biosynthesis and function of polyacetylenes and allied natural products. Prog Lipid Res 47:233–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murdoch SR, Dempster J (2000) Allergic contact dermatitis from carrot. Contact Dermatitis 42:236

    CAS  PubMed  Google Scholar 

  • Negri R (2015) Polyacetylenes from terrestrial plants and fungi: recent phytochemical and biological advances. Fitoterapia 106:92–109

    Article  CAS  PubMed  Google Scholar 

  • Nie B-M, Jiang X-Y, Cai J-X, Fu S-L, Yang L-M, Lin L et al (2008) Panaxydol and panaxynol protect cultured cortical neurons against Aβ25–35-induced toxicity. Neuropharmacology 54:845–853

    Article  CAS  PubMed  Google Scholar 

  • Pferschy-Wenzig EM, Getzinger V, Kunert O, Woelkart K, Zahrl J, Bauer R (2009) Determination of falcarinol in carrot (Daucus carota L.) genotypes using liquid chromatography/mass spectrometry. Food Chem 114:1083–1090

    Article  CAS  Google Scholar 

  • Phan CT, Hsu H (1973) Physical and chemical changes occurring in the carrot root during growth. Can J Plant Sci 53:629–634

    Article  Google Scholar 

  • Phan CT, Hsu H, Sarkar SK (1973) Physical and chemical changes occurring in the carrot root during storage. Can J Plant Sci 53:635–641

    Article  Google Scholar 

  • Pohl J (1894) Poisonous constituents of Oenanthe crocata and of Cicuta virosa. Arch Exp Pathol Pharmakol 34:258–267

    CAS  Google Scholar 

  • Purup S, Larsen E, Christensen LP (2009) Differential effects of falcarinol and related aliphatic C17-polyacetylenes on intestinal cell proliferation. J Agric Food Chem 57:8290–8296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platenius H (1934) Physiological and chemical changes occurring in the carrots during growth and storage. Cornell Univ Agric Expt Sta 161:1–19

    Google Scholar 

  • Ramloch-Lorenz K, Knudsen S, Sturm A (1993) Molecular characterization of the gene for carrot cell wall β-fructosidase. Plant J 4:545–554

    Article  CAS  PubMed  Google Scholar 

  • Ramos F, Takaishi Y, Kawazoe K, Osorio C, Duque C, Acuña R, Fujimoto Y, Sato M, Okamoto M, Oshikawa T, Ahmed SU (2006) Immunosuppressive diacetylenes, ceramides and cerebrosides from Hydrocotyle leucocephala. Phytochemistry 67:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Roman M, Dobrowolski JC, Baranska M, Baranski R (2011) Spectroscopic studies on bioactive polyacetylenes and other plant components in wild carrot root. J Nat Prod 74:1757–1763

    Article  CAS  PubMed  Google Scholar 

  • Rygg GL (1945) Sugars in the root of the carrot. Plant Physiol 20:47–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebkova V, Unger C, Hardegger Sturm A (1995) Biochemical, physiological, and molecular characterization of sucrose synthase from Daucus carota. Plant Physiol 108:75–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shallenberger RS, Birch GG (1975) Sugar chemistry. Avi Publishing Co., Westport, Connecticut, p 221

    Google Scholar 

  • Schmiech L, Alayrac L, Witulski B, Hofmann T (2009) Structure determination of bisacetylenic oxylipins in carrots (Daucus carota L.) and enantioselective synthesis of falcarindiol. J Agric Food Chem 57:11030–11040

    Article  CAS  PubMed  Google Scholar 

  • Schneider I, Bucar F (2005a) Lipoxygenase inhibitors from natural plant sources. Part 1. Medicinal plants with inhibitory activity on arachidonate 5-lipoxygenase and 5-lipoxygenase/cyclooxygenase. Phytother Res 19:81–102

    Article  CAS  PubMed  Google Scholar 

  • Schneider I, Bucar F (2005b) Lipoxygenase inhibitors from natural plant sources. Part 2. Medicinal plants with inhibitory activity on arachidonate 12-lipoxygenase, 15-lipoxygenase and leukotriene receptor antagonists. Phytother Res 19:263–272

    Article  CAS  PubMed  Google Scholar 

  • Simon PW (1996) Inheritance and expression of purple and yellow storage root color in carrot. J Hered 87:63–66

    Article  Google Scholar 

  • Simon PW, Peterson CE, Lindsay RC (1980a) Correlations between sensory and objective parameters of carrot flavor. J Agric Food Chem 28:559–562

    Article  CAS  Google Scholar 

  • Simon PW, Peterson CE, Lindsay RC (1980b) Genetic and environmental influences on carrot flavor. J Amer Soc Hort Sci 105:416–420

    Google Scholar 

  • Simon PW, Peterson CE, Lindsay RC (1980c) Genotype, soil, and climate effects on sensory and objective components of carrot flavor. J Amer Soc Hort Sci 107:644–648

    Google Scholar 

  • Stommel JR, Simon PW (1989) Phenotypic recurrent selection and heritability estimates for total dissolved solids and sugar type in carrot. J Amer Soc Hort Sci 114:695–699

    Google Scholar 

  • Stommel JR, Simon PW (1990) Multiple forms of invertase from Daucus carota cell cultures. Phytochemistry 29:2087–2089

    Article  CAS  Google Scholar 

  • Sturm A (1996) Molecular characterization and functional analysis of sucrose-cleaving enzymes in carrot (Daucus carota L.). J Exp Bot 47:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Sturm A, Chrispeels MJ (1990) cDNA cloning of carrot extracellular β-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell 2:1107–1119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sturm A, Šebková V, Lorenz K, Hardegger M, Lienhard S, Unger C (1995) Development- and organ-specific expression of the genes for sucrose synthase and three isozymes of acid β-fructofuranosidase in carrot. Planta 195:601–610

    Article  CAS  Google Scholar 

  • Sturm A, Tang GQ (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4:401–407

    Article  CAS  PubMed  Google Scholar 

  • Sturm A, Lienhard S, Schatt S, Hardegger M (1999a) Tissue-specific expression of two genes for sucrose synthase in carrot (Daucus carota L.). Plant Mol Biol 39:349–360

    Article  CAS  PubMed  Google Scholar 

  • Sturm A, Hess D, Lee H-S, Lienhard S (1999b) Neutral invertase is a novel type of sucrose-cleaving enzyme. Physiol Plant 107:159–165

    Article  CAS  Google Scholar 

  • Tang GQ, Lüscher M, Sturm A (1999) Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell 11:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang GQ, Sturm A (1999) Antisense repression of sucrose synthase in carrot (Daucus carota L.) affects growth rather than sucrose partitioning. Plant Mol Biol 41:465–479

    Article  CAS  PubMed  Google Scholar 

  • Unger C, Hardegger M, Liehard S, Sturm A (1994) cDNA cloning of carrot (Daucus carota) soluble acid β-furctofuranosidases and comparison with the cell wall isoenzyme. Plant Physiol 104:1351–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unger C, Hofsteenge J, Sturm A (1992) Purification and characterization of a soluble β-fructofuranosidase from Daucus carota. Eur J Biochem 204:915–921

    Article  CAS  PubMed  Google Scholar 

  • Vivek BS, Simon PW (1999) Linkage relationships among molecular markers and storage root traits of carrot (Daucus carota L. ssp. sativus). Theor Appl Genet 99:58–64

    Article  CAS  Google Scholar 

  • Werner HO (1941) Dry matter, sugar, and carotene content of morphological portions of carrots through the growing and storage season. Proc Amer Soc Hort Sci 38:267–272

    CAS  Google Scholar 

  • Wittstock U, Lichtnow KH, Teuscher E (1997) Effects of cicutoxin and related polyacetylenes from Cicuta virosa on neuronal action potentials: a comparative study on the mechanism of the convulsive action. Planta Med 63:120–124

    Article  CAS  PubMed  Google Scholar 

  • Xu ZS, Tan HW, Wang F, Hou XL, Xiong AS (2014) CarrotDB: a genomic and transcriptomic database for carrot. Database J Biol Databases Curation 40:1–8

    Google Scholar 

  • Yau YY, Simon PW (2003) A 2.5-kb Insert eliminates acid soluble invertase isozyme II transcript in a carrot (Daucus carota L.) roots, causing high sucrose accumulation. Plant Mol Biol 53:151–162

    Article  CAS  PubMed  Google Scholar 

  • Yau YY, Santos K, Simon PW (2005) Molecular tagging and selection for sugar type in carrot roots using co-dominant, PCR-based markers. Mol Breed 16:1–10

    Article  CAS  Google Scholar 

  • Yamazaki M, Hirakura K, Miyaichi Y, Imakura K, Kita M, Chiba K et al (2001) Effect of polyacetylenes on the neurite outgrowth of neuronal culture cells and scopolamine-induced memory impairment in mice. Biol Pharm Bull 24:1434–1436

    Article  CAS  PubMed  Google Scholar 

  • You YJ, Lee IS, Kim Y, Bae KH, Ahn BZ (2002) Antiangiogenic activity of Bupleurum longiradiatum on human umbilical venous endothelial cells. Arch Pharm Res 25:640–642

    Article  CAS  PubMed  Google Scholar 

  • Zidorn C, Hrer KJ, Ganzera M, Schubert B, Sigmund EM, Mader J, Greil R, Ellmerer EP, Stuppner H (2005) Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J Agric Food Chem 53:2518–2523

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo F. Cavagnaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cavagnaro, P.F. (2019). Genetics and Genomics of Carrot Sugars and Polyacetylenes. In: Simon, P., Iorizzo, M., Grzebelus, D., Baranski, R. (eds) The Carrot Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-03389-7_17

Download citation

Publish with us

Policies and ethics