Skip to main content

In vivo, In vitro, and In silico Studies of the GI Tract

  • Chapter
  • First Online:
Interdisciplinary Approaches to Food Digestion

Abstract

This chapter is divided into three sections, each presenting a different type of methodologies that are commonly used to study the link between food digestion and health. The first section focuses on in vivo methods, which are those that involve a living organism. The main types of epidemiological study design are presented, including observational and intervention studies. The relatively new field of nutritional epidemiology is further introduced, while animal studies are also briefly considered. The second section concerns in vitro experiments, which simulate digestive processes outside the body. The principles and practicalities of different static and dynamic in vitro models encountered in the literature are presented. Further, in silico approaches to digestion studies are discussed in the third section, with emphasis on developing understanding of digestive processes using numerical and computer techniques, with the aim to produce predictive models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera, J. M. (2005). Why food microstructure? Journal of Food Engineering, 67, 3–11.

    Article  Google Scholar 

  • Al-Gousous, J., & Langguth, P. (2015). Oral solid dosage form disintegration testing—The forgotten test. Journal of Pharmaceutical Sciences, 104, 2664–2675.

    Article  CAS  PubMed  Google Scholar 

  • An, J. S., Bae, I. Y., Han, S.-I., Lee, S.-J., & Lee, H. G. (2016). In vitro potential of phenolic phytochemicals from black rice on starch digestibility and rheological behaviors. Journal of Cereal Science, 70, 214–220.

    Article  CAS  Google Scholar 

  • Bach Knudsen, K. E., Lærke, H. N., Steenfeldt, S., Hedemann, M. S., & Jørgensen, H. (2006). In vivo methods to study the digestion of starch in pigs and poultry. Animal Feed Science and Technology, 130, 114–135.

    Article  CAS  Google Scholar 

  • Ban, C., Jo, M., Lim, S., & Choi, Y. L. (2018). Control of the gastrointestinal digestion of solid lipid nanoparticles using PEGylated emulsifiers. Food Chemistry, 239, 442–452.

    Article  CAS  PubMed  Google Scholar 

  • Barrett, K. E., Boitano, S., Barman, S. M., & Brooks, H. L. (2005). Gastrointestinal physiology. In K. E. Barrett (Ed.), Ganong’s review of medical physiology. New York: McGraw-Hill.

    Google Scholar 

  • Barroso, E., Cueva, C., Peláez, C., Martínez-Cuesta, M. C., & Requena, T. (2015). The computer-controlled multicompartmental dynamic model of the gastrointestinal system SIMGI. The impact of food bioactives on health: In vitro and ex vivo models. New York: Springer. https://doi.org/10.1007/978-3-319-16104-4_28

    Book  Google Scholar 

  • Bastianelli, D., Sauvant, D., & Rérat, A. (1996). Mathematical modeling of digestion and nutrient absorption in pigs. Journal of Animal Science, 74, 1873–1887.

    Article  CAS  PubMed  Google Scholar 

  • Bellmann, S., Lelieveld, J., Gorissen, T., Minekus, M., & Havenaar, R. (2016). Development of an advanced in vitro model of the stomach and its evaluation versus human gastric physiology. Food Research International, 88, 191–198.

    Article  CAS  Google Scholar 

  • Benjamin, O., Silcock, P., Kieser, J. A., Waddell, J. N., Swain, M. V., & Everett, D. W. (2012). Development of a model mouth containing an artificial tongue to measure the release of volatile compounds. Innovative Food Science and Emerging Technologies, 15, 96–103.

    Article  CAS  Google Scholar 

  • Bidlack, W. R., Birt, D., Borzelleca, J., Clemens, R., Coutrelis, N., Coughlin, J. R., et al. (2009). Expert report: Making decisions about the risks of chemicals in foods with limited scientific information. Comprehensive Reviews in Food Science and Food Safety, 8, 269–303.

    Article  CAS  Google Scholar 

  • Blanquet, S., Marol-Bonnin, S., Beyssac, E., Pompon, D., Renaud, M., & Alric, M. (2001). The ‘biodrug’ concept: An innovative approach to therapy. Trends in Biotechnology, 19, 393–400.

    Article  CAS  PubMed  Google Scholar 

  • Boccia, S. (2015). Credibility of observational studies: Why public health researchers should care? European Journal of Public Health, 25, 554–555.

    Article  PubMed  Google Scholar 

  • Bohn, T., Carriere, F., Day, L., Deglaire, A., Egger, L., Freitas, D., et al. (2017). Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Critical Reviews in Food Science and Nutrition, 1–23. https://doi.org/10.1080/10408398.2017.1315362

    Article  PubMed  Google Scholar 

  • Bongaerts, J. H. H., Rossetti, D., & Stokes, J. R. (2007). The lubricating properties of human whole saliva. Tribology Letters, 27, 277–287.

    Article  CAS  Google Scholar 

  • Bordoloi, A., Singh, J., & Kaur, L. (2012). In vitro digestibility of starch in cooked potatoes as affected by guar gum: Microstructural and rheological characteristics. Food Chemistry, 133, 1206–1213.

    Article  CAS  Google Scholar 

  • Bornhorst, G. M., Gouseti, O., Wickham, M. S. J., & Bakalis, S. (2016). Engineering digestion: Multiscale processes of food digestion. Journal of Food Science, 81, R534–R543.

    Article  CAS  PubMed  Google Scholar 

  • Bornhorst, G. M., Roman, M. J., Dreschler, K. C., & Singh, R. P. (2013). Physical property changes in raw and roasted almonds during gastric digestion in vivo and in vitro. Food Biophysics, 9, 39–48.

    Article  Google Scholar 

  • Bornhorst, G. M., & Singh, R. P. (2013). Kinetics of in vitro bread bolus digestion with varying oral and gastric digestion parameters. Food Biophysics, 8, 50–59.

    Article  Google Scholar 

  • Brahma, S., Weier, S. A., & Rose, D. J. (2016). Effects of selected extrusion parameters on physicochemical properties and in vitro starch digestibility and β-glucan extractability of whole grain oats. Journal of Cereal Science, 70, 85–90.

    Article  CAS  Google Scholar 

  • Bratten, J., & Jones, M. P. (2009). Prolonged recording of duodenal acid exposure in patients with functional dyspepsia and controls using a radiotelemetry pH monitoring system. Journal of Clinical Gastroenterology, 43, 527–533.

    Article  PubMed  Google Scholar 

  • Brener, W., Hendrix, T. R., & McHugh, P. R. (1983). Regulation of the gastric emptying of glucose. Gastroenterology, 85, 76–82.

    CAS  PubMed  Google Scholar 

  • Brown, R., & Ogden, J. (2004). Children’s eating attitudes and behaviour: A study of the modelling and control theories of parental influence. Health Education Research, 19, 261–271.

    Article  PubMed  Google Scholar 

  • Calbet, J. A., & MacLean, D. A. (1997). Role of caloric content on gastric emptying in humans. The Journal of Physiology, 498, 553–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson, M. D. A., & Morrison, R. S. (2009). Study design, precision, and validity in observational studies. Journal of Palliative Medicine, 12, 77–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carneiro, I., & Howard, N. (2011). Introduction to epidemiology. Maidenhead: Open University Press.

    Google Scholar 

  • Carscaddon, L. Literature reviews: Types of clinical study designs. GSU Library Research Guides.

    Google Scholar 

  • Chen, J., Gaikwad, V., Holmes, M., Murray, B., Povey, M., Wang, Y., et al. (2011). Development of a simple model device for in vitro gastric digestion investigation. Food & Function, 2, 174–182.

    Article  CAS  Google Scholar 

  • Chen, L., Tian, Y., Zhang, Z., Tong, Q., Sun, B., Rashed, M. M. A., et al. (2017). Effect of pullulan on the digestible, crystalline and morphological characteristics of rice starch. Food Hydrocolloids, 63, 383–390.

    Article  CAS  Google Scholar 

  • Chen, L., Xu, Y., Fan, T., Liao, Z., Wu, P., Wu, X., et al. (2016). Gastric emptying and morphology of a ‘near real’ in vitro human stomach model (RD-IV-HSM). Journal of Food Engineering, 183(1–8).

    Article  Google Scholar 

  • Chessa, S., Huatan, H., Levina, M., Mehta, R. Y., Ferrizzi, D., Rajabi-Siahboomi, A. R., et al. (2014). Application of the dynamic gastric model to evaluate the effect of food on the drug release characteristics of a hydrophilic matrix formulation. International Journal of Pharmaceutics, 466, 359–367.

    Article  CAS  PubMed  Google Scholar 

  • Cozzini, P. (2015). From medicinal chemistry to food science: A transfer of in silico methods applications. New York: Nova.

    Google Scholar 

  • Dalla Man, C., Camilleri, M., & Cobelli, C. (2006). A system model of oral glucose absorption: Validation on gold standard data. IEEE Transactions on Biomedical Engineering, 53, 2472–2478.

    Article  PubMed  Google Scholar 

  • Dalla Man, C., Yarasheski, K. E., Caumo, A., Robertson, H., Toffolo, G., Polonsky, K. S., et al. (2005). Insulin sensitivity by oral glucose minimal models: Validation against clamp. American Journal of Physiology. Endocrinology and Metabolism, 289, E954–E959.

    Article  CAS  PubMed  Google Scholar 

  • Darragh, A. J., & Hodgkinson, S. M. (2000). Quantifying the digestibility of dietary protein. The Journal of Nutrition, 130, 1850S–1856S.

    Article  CAS  PubMed  Google Scholar 

  • Darragh, A. J., & Moughan, P. J. (1995). The three-week-old piglet as a model animal for studying protein digestion in human infants. Journal of Pediatric Gastroenterology and Nutrition, 21, 387–393.

    Article  CAS  PubMed  Google Scholar 

  • de Loubens, C., Panouillé, M., Saint-Eve, A., Déléris, I., Tréléa, I. C., & Souchon, I. (2011). Mechanistic model of in vitro salt release from model dairy gels based on standardized breakdown test simulating mastication. Journal of Food Engineering, 105, 161–168.

    Article  CAS  Google Scholar 

  • de Wijk, R. A., Janssen, A. M., & Prinz, J. F. (2011). Oral movements and the perception of semi-solid foods. Physiology and Behavior, 104, 423–428.

    Article  PubMed  CAS  Google Scholar 

  • Deeks, J. J., Dinnes, J., D’Amico, R., Sowden, A. J., Sakarovitch, C., Song, F., et al. (2003). Evaluating non-randomised intervention studies. Health Technology Assessment, 7, iii–iix.

    Article  CAS  PubMed  Google Scholar 

  • Deferme, S., Annaert, P., & Augustijns, P. (2008). Vitro screening models to assess intestinal drug absorption and metabolism. In C. Ehrhardt & K. J. Kim (Eds.), Drug absorption studies (pp. 182–215). Boston, MA: Springer. https://doi.org/10.1007/978-0-387-74901-3_8

    Chapter  Google Scholar 

  • Deglaire, A., & Moughan, P. J. (2012). Animal models for determining amino acid digestibility in humans – A review. The British Journal of Nutrition, 108, S273–S281.

    Article  CAS  PubMed  Google Scholar 

  • Dhital, S., Dabit, L., Zhang, B., Flanagan, B., & Shrestha, A. K. (2015). In vitro digestibility and physicochemical properties of milled rice. Food Chemistry, 172, 757–765.

    Article  CAS  PubMed  Google Scholar 

  • Di Muria, M., Lamberti, G., & Titomanlio, G. (2010). Physiologically based pharmacokinetics: A simple, all purpose model. Industrial and Engineering Chemistry Research, 49, 2969–2978.

    Article  CAS  Google Scholar 

  • Donaldson, B., Rush, E., Young, O., & Winger, R. (2014). Variation in gastric pH may determine kiwifruit’s effect on functional GI disorder: An in vitro study. Nutrients, 6, 1488–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont, D., & Mackie, A. R. (2015). Static and dynamic in vitro digestion models to study protein stability in the gastrointestinal tract. Drug Discovery Today: Disease Models, 17–18, 23–27.

    Google Scholar 

  • Egger, L., Ménard, O., Delgado-Andrade, C., Alvito, P., Assunção, R., Balance, S., et al. (2016). The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 88, 217–225.

    Article  CAS  Google Scholar 

  • Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46(Suppl 2), S33–S50.

    PubMed  Google Scholar 

  • Englyst, H. N., Kingman, S. M., Hudson, G. J., & Cummings, J. H. (1996). Measurement of resistant starch in vitro and in vivo. The British Journal of Nutrition, 75, 749.

    Article  CAS  PubMed  Google Scholar 

  • Englyst, H. N., Veenstra, J., & Hudson, G. J. (2007). Measurement of rapidly available glucose (RAG) in plant foods: A potential in vitro predictor of the glycaemic response. The British Journal of Nutrition, 75, 327.

    Article  Google Scholar 

  • Englyst, K. N., Vinoy, S., Englyst, H. N., & Lang, V. (2003). Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose. The British Journal of Nutrition, 89, 329.

    Article  CAS  PubMed  Google Scholar 

  • Farmer, A. D., Scott, S. M., & Hobson, A. R. (2013). Gastrointestinal motility revisited: The wireless motility capsule. United European Gastroenterology Journal, 1, 413–421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrua, M. J., & Singh, R. P. (2011). Understanding the fluid dynamics of gastric digestion using computational modeling. Procedia Food Science, 1, 1465–1472.

    Article  Google Scholar 

  • Gidley, M. J. (2013). Hydrocolloids in the digestive tract and related health implications. Current Opinion in Colloid and Interface Science, 18, 371–378.

    Article  CAS  Google Scholar 

  • Goñi, I., Garcia-Alonso, A., & Saura-Calixto, F. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17, 427–437.

    Article  Google Scholar 

  • Gouseti, O., Jaime-Fonseca, M. R., Fryer, P. J., Mills, C., Wickham, M. S. J., & Bakalis, S. (2014). Hydrocolloids in human digestion: Dynamic in-vitro assessment of the effect of food formulation on mass transfer. Food Hydrocolloids, 42, 378–385.

    Article  CAS  Google Scholar 

  • Granfeldt, Y., Bjorck, I., Drews, A., Tovar, J. (1992). An in vitro procedure based on chewing to predict metabolic response to starch in cereal and legume products. European Journal of Clinical Nutrition, 46, 649–660.

    Google Scholar 

  • Grimes, D. A., & Schulz, K. F. (2002). An overview of clinical research: The lay of the land. Lancet, 359, 57–61.

    Article  PubMed  Google Scholar 

  • Hajat C. (2011) An Introduction to Epidemiology. In: Teare M. (ed), Genetic Epidemiology. Methods in Molecular Biology (Methods and Protocols), vol 713. Humana Press, Totowa, NJ

    Google Scholar 

  • Hellström, P. M., Grybäck, P., & Jacobsson, H. (2006). The physiology of gastric emptying. Best Practice & Research. Clinical Anaesthesiology, 20, 397–407.

    Article  CAS  Google Scholar 

  • Hoffmann, K., Schulze, M. B., Schienkiewitz, A., Nöthlings, U., & Boeing, H. (2004). Application of a new statistical method to derive dietary patterns in nutritional epidemiology. American Journal of Epidemiology, 159, 935–944.

    Article  PubMed  Google Scholar 

  • Home Office, Department for Business Innovation & Skills, Department of Health, (2014). Working to reduce the use of animals in scientific research. Crown Copyright. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/277942/bis-14-589-working-to-reduce-the-use-of_animals-in-research.pdf

  • Hsu, R. J. C., Chen, H. J., Lu, S., & Chiang, W. (2015). Effects of cooking, retrogradation and drying on starch digestibility in instant rice making. Journal of Cereal Science, 65, 154–161.

    Article  CAS  Google Scholar 

  • Hu, F. B. (2002). Dietary pattern analysis: A new direction in nutritional epidemiology. Current Opinion Lipidology, 13(1), 3–9.

    Article  CAS  Google Scholar 

  • Hur, S. J., Lim, B. O., Decker, E. A., & McClements, D. J. (2011). In vitro human digestion models for food applications. Food Chemistry, 125, 1–12.

    Article  CAS  Google Scholar 

  • Jenkins, D. J., Wolever, T. M., Leeds, A. R., Gassull, M. A., Haisman, P., Dilawari, J., et al. (1978). Dietary fibres, fibre analogues, and glucose tolerance: Importance of viscosity. British Medical Journal, 1, 1392–1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph, I. M. P., Zavros, Y., Merchant, J. L., & Kirschner, D. (2003). A model for integrative study of human gastric acid secretion. Journal of Applied Physiology, 94, 1602–1618.

    Article  PubMed  Google Scholar 

  • Jumars, P. A. (2000). Animal guts as nonideal chemical reactors: Partial mixing and axial variation in absorption kinetics. The American Naturalist, 155, 544–555.

    Article  PubMed  Google Scholar 

  • Kahan, B. C., Rehal, S., & Cro, S. (2015). Risk of selection bias in randomised trials. Trials, 16(405).

    Google Scholar 

  • Kong, F., & Singh, R. P. (2008a). Disintegration of solid foods in human stomach. Journal of Food Science, 73, R67–R80.

    Article  CAS  PubMed  Google Scholar 

  • Kong, F., & Singh, R. P. (2008b). A model stomach system to investigate disintegration kinetics of solid foods during gastric digestion. Journal of Food Science, 73, E202–E210.

    Article  CAS  PubMed  Google Scholar 

  • Kong, F., & Singh, R. P. (2009). Modes of disintegration of solid foods in simulated gastric environment. Food Biophysics, 4, 180–190.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozu, H., Kobayashi, I., Neves, M. A., Nakajima, M., Uemura, K., Sato, S., et al. (2010). Analysis of flow phenomena in gastric contents induced by human gastric peristalsis using CFD. Food Biophysics, 5, 330–336.

    Article  Google Scholar 

  • Krul, C., Luiten-Schuite, A., Baandagger, R., Verhagen, H., Mohn, G., Feron, V., et al. (2000). Application of a dynamic in vitro gastrointestinal tract model to study the availability of food mutagens, using heterocyclic aromatic amines as model compounds. Food and Chemical Toxicology, 38, 783–792.

    Article  CAS  PubMed  Google Scholar 

  • Last, J. M., & International Epidemiological Association. (2001). A dictionary of epidemiology. New York: Oxford University Press.

    Google Scholar 

  • Le Ferrec, E., Chesne, C., Artusson, P., Brayden, D., Fabre, G., & Gires, P. (2001). In vitro models of the intestinal barrier. ATLA, 29, 649–668.

    PubMed  Google Scholar 

  • Lea, A. S. (1890). A comparative study of artificial and natural digestions. The Journal of Physiology, 11, 226–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre, D. E., Venema, K., Gombau, L., Valerio Jr., L. G., Raju, J., Bondy, G. S., et al. (2015). Utility of models of the gastrointestinal tract for assessment of the digestion and absorption of engineered nanomaterials released from food matrices. Nanotoxicology, 9, 523–542.

    Article  CAS  PubMed  Google Scholar 

  • Lo Curto, A., Pitino, I., Mandalari, G., Dainty, J. R., Faulks, R. M., John Wickham, M. S., et al. (2011). Survival of probiotic lactobacilli in the upper gastrointestinal tract using an in vitro gastric model of digestion. Food Microbiology, 28, 1359–1366.

    Article  PubMed  Google Scholar 

  • Logan, J. D., Joern, A., & Wolesensky, W. (2002). Location, time, and temperature dependence of digestion in simple animal tracts. Journal of Theoretical Biology, 216, 5–18.

    Article  PubMed  CAS  Google Scholar 

  • Love, R. J., Lentle, R. G., Asvarujanon, P., Hemar, Y., & Stafford, K. J. (2012). An expanded finite element model of the intestinal mixing of digesta. Food Digestion, 4, 26–35.

    Article  Google Scholar 

  • Lvova, L., Denis, S., Barra, A., Mielle, P., Salles, C., Vergoignan, C., et al. (2012). Salt release monitoring with specific sensors in ‘in vitro’ oral and digestive environments from soft cheeses. Talanta, 97, 171–180.

    Article  CAS  PubMed  Google Scholar 

  • Mackie, A. R., Bajka, B. H., Rigby, N. M., Wilde, P. J., Alves-Pereira, F., Mosleth, E. F., et al. (2017). Oatmeal particle size alters glycemic index but not as a function of gastric emptying rate. American Journal of Physiology. Gastrointestinal and Liver Physiology, 313, G239–G246.

    Article  PubMed  Google Scholar 

  • Mackie, A., Rigby, N., Macierzanka, A. & Bajka, B. (2015). Approaches to static digestion models. In The impact of food bioactives on health (pp. 23–31). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-16104-4_3

    Google Scholar 

  • Mainville, I., Arcand, Y., & Farnworth, E. R. (2005). A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. International Journal of Food Microbiology, 99, 287–296.

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Valderrama, J., Terriza, J. A. H., Torcello-Gómez, A., & Cabrerizo-Vílchez, M. A. (2013). In vitro digestion of interfacial protein structures. Soft Matter, 9, 1043.

    Article  CAS  Google Scholar 

  • Marciani, L., Gowland, P. A., Spiller, R. C., Manoj, P., Moore, R. J., Young, P., et al. (2000). Gastric response to increased meal viscosity assessed by echo-planar magnetic resonance imaging in humans. The Journal of Nutrition, 130, 122–127.

    Article  CAS  PubMed  Google Scholar 

  • Marciani, L., Gowland, P. A., Spiller, R. C., Manoj, P., Moore, R. J., Young, P., et al. (2001). Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. American Journal of Physiology. Gastrointestinal and Liver Physiology, 280, G1227–G1233.

    Article  CAS  PubMed  Google Scholar 

  • Marciani, L., Hall, N., Pritchard, S. E., Cox, E. F., Totman, J. J., Lad, M., et al. (2012). Preventing gastric sieving by blending a solid/water meal enhances satiation in healthy humans. The Journal of Nutrition, 142, 1253–1258.

    Article  CAS  PubMed  Google Scholar 

  • Marino, S., Ganguli, S., Joseph, I. M. P., & Kirschner, D. E. (2003). The importance of an inter-compartmental delay in a model for human gastric acid secretion. Bulletin of Mathematical Biology, 65, 963–990.

    Article  PubMed  Google Scholar 

  • Marteau, P., Minekus, M., Havenaar, R., & Huis in’t Veld, J. H. (1997). Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: Validation and the effects of bile. Journal of Dairy Science, 80, 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  • Marze, S. (2017). Bioavailability of nutrients and micronutrients: Advances in modeling and in vitro approaches. Annual Review of Food Science and Technology, 8, 35–55.

    Article  CAS  PubMed  Google Scholar 

  • Mason, W. D., Winer, N., Kochak, G., Cohen, I., & Bell, R. (1979). Kinetics and absolute bioavailability of atenolol. Clinical Pharmacology and Therapeutics, 25.

    Article  CAS  Google Scholar 

  • McAllister, M. (2010). Dynamic dissolution: A step closer to predictive dissolution testing? Molecular Pharmaceutics, 7, 1374–1387.

    Article  CAS  PubMed  Google Scholar 

  • McClements, D. J. (2007). Understanding and controlling the microstructure of complex foods. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • McClements, D. J., & Li, Y. (2010). Review of in vitro digestion models for rapid screening of emulsion-based systems. Food & Function, 1, 32–59.

    Article  CAS  Google Scholar 

  • McClements, D. J., Li, F., & Xiao, H. (2015). The nutraceutical bioavailability classification scheme: Classifying nutraceuticals according to factors limiting their oral bioavailability. Annual Review of Food Science and Technology, 6, 299–327.

    Article  CAS  PubMed  Google Scholar 

  • McHugh, P. R. (1983). The control of gastric emptying. Journal of the Autonomic Nervous System, 9, 221–231.

    Article  CAS  PubMed  Google Scholar 

  • McHugh, P. R., & Moran, T. H. (1979). Calories and gastric emptying: A regulatory capacity with implications for feeding. The American Journal of Physiology, 236, R254–R260.

    CAS  PubMed  Google Scholar 

  • Ménard, O., Cattenoz, T., Guillemin, H., Souchon, I., Deglaire, A., Dupont, D., et al. (2014). Validation of a new in vitro dynamic system to simulate infant digestion. Food Chemistry, 145, 1039–1045.

    Article  PubMed  CAS  Google Scholar 

  • Mercuri, A., Lo Curto, A., Wickham, M. S. J., Craig, D. Q. M., & Barker, S. A. (2008). Dynamic gastric model (DGM): a novel in vitro apparatus to assess the impact of gastric digestion on the droplet size of self-emulsifying drug-delivery systems. Journal of Pharmacy and Pharmacology, 60, 4.

    Article  Google Scholar 

  • Meullenet, J.-F., & Gandhapuneni, R. K. (2006). Development of the BITE Master II and its application to the study of cheese hardness. Physiology and Behavior, 89, 39–43.

    Article  CAS  PubMed  Google Scholar 

  • Mielle, P., Tarrega, A., Sémon, E., Maratray, J., Gorria, P., Liodenot, J. J., et al. (2010). From human to artificial mouth, from basics to results. Sensors and Actuators B: Chemical, 146, 440–445.

    Article  CAS  Google Scholar 

  • Mills, C.E.N., Marsh, J.T., Johnson, P.E., Boyle, R.,Hoffmann-Sommerguber, K., Dupont, D., Bartra, J., Bakalis, S., McLaughlin, J., Shewry, P.R. (2013). Literature review: ‘in vitro digestibility tests for allergenicity assessment’. EFSA supporting publications, 10(12), EN-529.

    Google Scholar 

  • Mills, T., Spyropoulos, F., Norton, I. T., & Bakalis, S. (2011). Development of an in-vitro mouth model to quantify salt release from gels. Food Hydrocolloids, 25, 107–113.

    Article  CAS  Google Scholar 

  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., et al. (2014). A standardised static in vitro digestion method suitable for food – An international consensus. Food and Function, 5, 1113–1124.

    Article  CAS  PubMed  Google Scholar 

  • Minekus, M., Marteau, P., Havenaar, R., & Huis in’t Veld, J. H. J. (1995). A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. ATLA, Alternatives to Laboratory Animals, 23, 197–209.

    Google Scholar 

  • Minekus, M., Smeets-Peeters, M., Bernalier, A., Marol-Bonnin, S., Havenaar, R., Marteau, P., et al. (1999). A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Applied Microbiology and Biotechnology, 53, 108–114.

    Article  CAS  PubMed  Google Scholar 

  • Misra, S. (2012). Randomized double blind placebo control studies, the ‘Gold Standard’ in intervention based studies. Indian Journal of Sexually Transmitted Diseases and AIDS, 33, 131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moosavian, S. P., Haghighatdoost, F., Surkan, P. J., & Azadbakht, L. (2017). Salt and obesity: A systematic review and meta-analysis of observational studies. International Journal of Food Sciences and Nutrition, 68, 265–277.

    Article  PubMed  Google Scholar 

  • Morell, P., Hernando, I., & Fiszman, S. M. (2014). Understanding the relevance of in-mouth food processing. A review of in vitro techniques. Trends in Food Science and Technology, 35, 18–31.

    Article  CAS  Google Scholar 

  • Motilva, M.-J., Serra, A., & Rubió, L. (2015). Nutrikinetic studies of food bioactive compounds: From in vitro to in vivo approaches. International Journal of Food Sciences and Nutrition, 66, S41–S52.

    Article  PubMed  Google Scholar 

  • Moxon, T. E., Gouseti, O., & Bakalis, S. (2016). In silico modelling of mass transfer & absorption in the human gut. Journal of Food Engineering, 176, 110–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moxon, T. E., Nimmegeers, P., Telen, D., Fryer, P. J., Van Impe, J., Bakalisa, S., et al. (2017). Effect of chyme viscosity & nutrient feedback mechanism on gastric emptying. Chemical Engineering Science, 171, 318–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mun, S., & McClements, D. J. (2017). Influence of simulated in-mouth processing (size reduction and alpha-amylase addition) on lipid digestion and β-carotene bioaccessibility in starch-based filled hydrogels. LWT-Food Science and Technology, 80, 113–120.

    Article  CAS  Google Scholar 

  • Ni, P. F., Ho, N. F. H., Fox, J. L., Leuenberger, H., & Higuchi, W. I. (1980). Theoretical model studies of intestinal drug absorption V. Non-steady-state fluid flow and absorption. International Journal of Pharmaceutics, 5, 33–47.

    Article  CAS  Google Scholar 

  • Panouillé, M., Saint-Eve, A., Déléris, I., Le Bleis, F., & Souchon, I. (2014). Oral processing and bolus properties drive the dynamics of salty and texture perceptions of bread. Food Research International, 62, 238–246.

    Article  Google Scholar 

  • Penry, D. L., & Jumars, P. A. (1986). Chemical reactor analysis and optimal digestion. Bioscience, 36, 310–315.

    Article  CAS  Google Scholar 

  • Penry, D. L., & Jumars, P. A. (1987). Modeling animal guts as chemical reactors. The American Naturalist, 129, 69.

    Article  CAS  Google Scholar 

  • Peyron, M.-A., & Woda, A. (2016). An update about artificial mastication. Current Opinion in Food Science, 9, 21–28.

    Article  Google Scholar 

  • Qin, D., Yang, X., Gao, S., Yao, J., & McClements, D. J. (2016). Influence of hydrocolloids (dietary fibers) on lipid digestion of protein-stabilized emulsions: Comparison of neutral, anionic, and cationic polysaccharides. Journal of Food Science, 81, C1636–C1645.

    Article  CAS  PubMed  Google Scholar 

  • Ronda, F., Rivero, P., Caballero, P. A., & Quilez, J. (2012). High insoluble fibre content increases in vitro starch digestibility in partially baked breads. International Journal of Food Sciences and Nutrition, 63, 971–977.

    Article  CAS  PubMed  Google Scholar 

  • Salles, C., Tarrega, A., Mielle, P., Maratray, J., Gorria, P., Liaboeuf, J., et al. (2007). Development of a chewing simulator for food breakdown and the analysis of in vitro flavor compound release in a mouth environment. Journal of Food Engineering, 82, 189–198.

    Article  Google Scholar 

  • Salvia-Trujillo, L., Qian, C., Martín-Belloso, O., & McClements, D. J. (2013). Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry, 141, 1475–1480.

    Article  CAS  Google Scholar 

  • Sauter, M., Curcic, J., Menne, D., Goetze, O., Fried, M., Schwizer, W., et al. (2012). Measuring the interaction of meal and gastric secretion: A combined quantitative magnetic resonance imaging and pharmacokinetic modeling approach. Neurogastroenterology and Motility, 24, 632–e273.

    Article  CAS  PubMed  Google Scholar 

  • Schwizer, W., Steingötter, A., Fox, M., Zur, T., Thumshirn, M., Bösiger, P., et al. (2002). Non-invasive measurement of gastric accommodation in humans. Gut, 51(Suppl 1), i59–i62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegel, J. A., Urbain, J. L., Adler, L. P., Charkes, N. D., Maurer, A. H., Krevsky, B., et al. (1988). Biphasic nature of gastric emptying. Gut, 29, 85–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slavin, J. (2013). Fiber and prebiotics: Mechanisms and health benefits. Nutrients, 5, 1417–1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatopoulos, K., Batchelor, H. K., & Simmons, M. J. H. (2016). Dissolution profile of theophylline modified release tablets, using a biorelevant Dynamic Colon Model (DCM). European Journal of Pharmaceutics and Biopharmaceutics, 108, 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Stoll, B. R., Batycky, R. P., Leipold, H. R., Milstein, S., & Edwards, D. A. (2000). A theory of molecular absorption from the small intestine. Chemical Engineering Science, 55, 473–489.

    Article  CAS  Google Scholar 

  • Sugano, K. (2009). Introduction to computational oral absorption simulation. Expert Opinion on Drug Metabolism and Toxicology, 5, 259–293.

    Article  CAS  PubMed  Google Scholar 

  • Sutton, G. (2003). Putrid gums and ‘Dead Men’s Cloaths’: James Lind aboard the Salisbury. Journal of the Royal Society of Medicine, 96, 605–608.

    PubMed  PubMed Central  Google Scholar 

  • Taghipoor, M., Barles, G., Georgelin, C., Licois, J.-R., & Lescoat, P. (2014). Digestion modelling in the small intestine: Impact of dietary fibre. Mathematical Biosciences, 258, 101–112.

    Article  CAS  PubMed  Google Scholar 

  • Taghipoor, M., Lescoat, P., Licois, J. R., Georgelin, C., & Barles, G. (2012). Mathematical modeling of transport and degradation of feedstuffs in the small intestine. Journal of Theoretical Biology, 294, 114–121.

    Article  PubMed  Google Scholar 

  • Tamura, M., Okazaki, Y., Kumagai, C., & Ogawa, Y. (2017). The importance of an oral digestion step in evaluating simulated in vitro digestibility of starch from cooked rice grain. Food Research International, 94, 6–12.

    Article  CAS  PubMed  Google Scholar 

  • Tharakan, A., Norton, I. T., Fryer, P. J., & Bakalis, S. (2010). Mass transfer and nutrient absorption in a simulated model of small intestine. Journal of Food Science, 75, E339–E346.

    Article  CAS  PubMed  Google Scholar 

  • Thiese, M. S. (2014). Observational and interventional study design types; an overview. Biochemia Medica, 24, 199–210.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas, K., Aalbers, M., Bannon, G. A., Bartels, M., Dearman, R. J., Esdaile, D. J., et al. (2004). A multi-laboratory evaluation of a common in vitro pepsin digestion assay protocol used in assessing the safety of novel proteins. Regulatory Toxicology and Pharmacology, 39, 87–98.

    Article  CAS  PubMed  Google Scholar 

  • Thuenemann, E. C. (2015). Dynamic digestion models: general introduction. In: Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H. (eds), The impact of food bioactives on health, in-vitroand ex-vivomodels. Springer, USA.

    Google Scholar 

  • Timmreck, T. C. (2002). An introduction to epidemiology. Sudbury, MA: Jones and Bartlett Publishers.

    Google Scholar 

  • van Aken, G. A., Vingerhoeds, M. H., & de Hoog, E. H. A. (2007). Food colloids under oral conditions. Current Opinion in Colloid & Interface Science, 12, 251–262.

    Article  CAS  Google Scholar 

  • Van de Wiele, T., Van den Abbeele, P., Ossieur, W., Possemiers, S., & Marzorati, M. (2015). The simulator of the human intestinal microbial ecosystem (SHIME®). In K. Verhoeckx, P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, et al. (Eds.), The impact of food bioactives on health (pp. 305–317). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-16104-4_27

    Chapter  Google Scholar 

  • Van Hung, P., Lam, N., Thi, N., & Phi, L. (2016). Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments. Food Chemistry, 191, 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Vardhanabhuti, B., Cox, P. W., Norton, I. T., & Foegeding, E. A. (2011). Lubricating properties of human whole saliva as affected by β-lactoglobulin. Food Hydrocolloids, 25, 1499–1506.

    Article  CAS  Google Scholar 

  • Vist, G. E., & Maughan, R. J. (1995). The effect of osmolality and carbohydrate content on the rate of gastric emptying of liquids in man. The Journal of Physiology, 486, 523–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham, M., Faulks, R., & Mills, C. (2009). In vitro digestion methods for assessing the effect of food structure on allergen breakdown. Molecular Nutrition & Food Research, 53, 952–958.

    Article  CAS  Google Scholar 

  • Willett, W. (1987). Nutritional epidemiology: Issues and challenges. International Journal of Epidemiology, 16, 312–317.

    Article  CAS  PubMed  Google Scholar 

  • Willett, W. (2013). Nutritional epidemiology. New York: Oxford University Press.

    Google Scholar 

  • Wilson, T., & Temple, N. J. (2001). Nutritional health: Strategies for disease prevention. Totowa, NJ: Humana Press.

    Book  Google Scholar 

  • Woolnough, J. W., Bird, A. R., Monro, J. A., & Brennan, C. S. (2010). The effect of a brief salivary α-amylase exposure during chewing on subsequent in vitro starch digestion curve profiles. International Journal of Molecular Sciences, 11, 2780–2790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, N. D., Kong, F., Williams, B. S., & Fortner, L. (2016). A human duodenum model (HDM) to study transport and digestion of intestinal contents. Journal of Food Engineering, 171, 129–136.

    Article  CAS  Google Scholar 

  • Xu, W. L., Lewis, D., Bronlund, J. E., & Morgenstern, M. P. (2008). Mechanism, design and motion control of a linkage chewing device for food evaluation. Mechanism and Machine Theory, 43, 376–389.

    Article  Google Scholar 

  • Yu, L. X., & Amidon, G. L. (1999). A compartmental absorption and transit model for estimating oral drug absorption. International Journal of Pharmaceutics, 186, 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Yu, L. X., Crison, J. R., & Amidon, G. L. (1996). Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. International Journal of Pharmaceutics, 140, 111–118.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ourania Gouseti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muttakin, S., Moxon, T.E., Gouseti, O. (2019). In vivo, In vitro, and In silico Studies of the GI Tract. In: Gouseti, O., Bornhorst, G., Bakalis, S., Mackie, A. (eds) Interdisciplinary Approaches to Food Digestion. Springer, Cham. https://doi.org/10.1007/978-3-030-03901-1_3

Download citation

Publish with us

Policies and ethics