Skip to main content

Regularized Tensor Learning with Adaptive One-Class Support Vector Machines

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11303))

Included in the following conference series:

Abstract

The extraction of useful information from multi-sensors data requires fairly involved methodologies and algorithms. We propose an \(L_1\) regularized tensor decomposition to decrease learning sensitivities, coupled with an adaptive one-class support vector machine (OCSVM) for anomaly detection purposes. This new framework yields sparse and smooth representations of the desired outcomes. An automatic parameter selection method based on the euclidean metric is also proposed to adaptively tune the kernel parameter inherent in OCSVM. These positive characteristics of tensor analysis allow us to fuse data from multiple sensors and further analyze them at the same time at which informative features are being extracted. This work is challenging because it is cross disciplinary; and thus it requires coherency to the specific domain applications fundamentals (such as structural health monitoring), on the one hand, and its diversity on machine learning techniques on the other. Compared to the state-of-the-art approaches for learning tensor and anomaly detection, our proposed methods work well on experiments and show better performance in terms of decomposition quality and stability of the extracted features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor factorizations for incomplete data. Chemom. Intell. Lab. Syst. 106(1), 41–56 (2011)

    Article  Google Scholar 

  2. Anaissi, A., Goyal, M., Catchpoole, D.R., Braytee, A., Kennedy, P.J.: Ensemble feature learning of genomic data using support vector machine. PloS One 11(6), e0157330 (2016)

    Article  Google Scholar 

  3. Anaissi, A., Kennedy, P.J., Goyal, M., Catchpoole, D.R.: A balanced iterative random forest for gene selection from microarray data. BMC Bioinform. 14(1), 261 (2013)

    Article  Google Scholar 

  4. Anaissi, A., et al.: Adaptive one-class support vector machine for damage detection in structural health monitoring. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10234, pp. 42–57. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7_4

    Chapter  Google Scholar 

  5. Bader, B.W., Harshman, R.A., Kolda, T.G.: Temporal analysis of semantic graphs using ASALSAN. In: Seventh IEEE International Conference on Data Mining, ICDM 2007, pp. 33–42. IEEE (2007)

    Google Scholar 

  6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  7. Bro, R., Kiers, H.A.: A new efficient method for determining the number of components in parafac models. J. Chemom. 17(5), 274–286 (2003)

    Article  Google Scholar 

  8. Cortes, C., Vapnik, V.: Support vector machine. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  9. Eldén, L.: Perturbation theory for the least squares problem with linear equality constraints. SIAM J. Numer. Anal. 17(3), 338–350 (1980)

    Article  MathSciNet  Google Scholar 

  10. Farrar, C.R., Worden, K.: Structural Health Monitoring: A Machine Learning Perspective. Wiley, Chichester (2012)

    Book  Google Scholar 

  11. Ho, J.C., Ghosh, J., Sun, J.: Marble: high-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 115–124. ACM (2014)

    Google Scholar 

  12. Khazai, S., Homayouni, S., Safari, A., Mojaradi, B.: Anomaly detection in hyperspectral images based on an adaptive support vector method. IEEE Geosci. Remote. Sens. Lett. 8(4), 646–650 (2011)

    Article  Google Scholar 

  13. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  14. Mahadevan, S., Shah, S.L.: Fault detection and diagnosis in process data using one-class support vector machines. J. Process. Control 19(10), 1627–1639 (2009)

    Article  Google Scholar 

  15. Menon, A.K., Cai, C., Wang, W., Wen, T., Chen, F.: Fine-grained od estimation with automated zoning and sparsity regularisation. Transp. Res. Part B 80, 150–172 (2015)

    Article  Google Scholar 

  16. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Tensors for data mining and data fusion: Models, applications, and scalable algorithms. ACM Trans. Intell. Syst. Technol. (TIST) 8(2), 16 (2016)

    Google Scholar 

  17. Prada, M.A., Toivola, J., Kullaa, J., Hollmén, J.: Three-way analysis of structural health monitoring data. Neurocomputing 80, 119–128 (2012)

    Article  Google Scholar 

  18. Ricci, S.: Best achievable modal eigenvectors in structural damage detection. Exp. Mech. 40(4), 425–429 (2000)

    Article  Google Scholar 

  19. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C., et al.: Support vector method for novelty detection. In: NIPS, vol. 12, pp. 582–588. Citeseer (1999)

    Google Scholar 

  20. Sun, J., Tao, D., Papadimitriou, S., Yu, P.S., Faloutsos, C.: Incremental tensor analysis: Theory and applications. ACM Trans. Knowl. Discov. Data (TKDD) 2(3), 11 (2008)

    Google Scholar 

  21. Worden, K., Manson, G.: The application of machine learning to structural health monitoring. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 365(1851), 515–537 (2007)

    Article  Google Scholar 

  22. Xiao, Y., Wang, H., Xu, W.: Parameter selection of gaussian kernel for one-class SVM. IEEE Trans. Cybern. 45(5), 941–953 (2015)

    Article  Google Scholar 

  23. Yin, S., Zhu, X., Jing, C.: Fault detection based on a robust one class support vector machine. Neurocomputing 145, 263–268 (2014)

    Article  Google Scholar 

  24. Zhou, S., Vinh, N.X., Bailey, J., Jia, Y., Davidson, I.: Accelerating online CP decompositions for higher order tensors. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1375–1384. ACM (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Anaissi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anaissi, A., Lee, Y., Naji, M. (2018). Regularized Tensor Learning with Adaptive One-Class Support Vector Machines. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11303. Springer, Cham. https://doi.org/10.1007/978-3-030-04182-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04182-3_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04181-6

  • Online ISBN: 978-3-030-04182-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics