Skip to main content

Sampling Strategies for Representative Time Series in Load Flow Calculations

  • Conference paper
  • First Online:
Data Analytics for Renewable Energy Integration. Technologies, Systems and Society (DARE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11325))

  • 578 Accesses

Abstract

Power system analysis algorithms increasingly use time series with a high temporal resolution to assess operational and planning aspects of the power grid. By using time series with high temporal resolution, information is getting more detailed, but at the same time, the computational costs of the algorithms increase. With the help of our algorithm, we create representative time series that have similar characteristics to the original time series. With the help of these representative time series, it is possible to reduce the computational cost of power system analysis algorithms having nearly the same results as with the original time series. In this work, we improve our previous algorithm with the help of specialized sampling strategies. Furthermore, we provide a new method to compare power analysis results achieved with the representative time series to the original time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henze, J., Kneiske, T., Braun, M., Sick, B.: Identifying representative load time series for load flow calculations. In: Woon, W.L., Aung, Z., Kramer, O., Madnick, S. (eds.) DARE 2017. LNCS (LNAI), vol. 10691, pp. 83–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71643-5_8

    Chapter  Google Scholar 

  2. Green, R., Staffell, I., Vasilakos, N.: Divide and Conquer? k-means clustering of demand data allows rapid and accurate simulations of the British electricity system. IEEE Trans. Eng. Manag. 61(2), 251–260 (2014)

    Article  Google Scholar 

  3. Poncelet, K., Hoschle, H., Delarue, E., Virag, A., D’haeseleer, W.: Selecting representative days for capturing the implications of integrating intermittent renewables in generation expansion planning problems. IEEE Trans. Power Syst. 32(3), 1936–1948 (2017)

    Article  Google Scholar 

  4. Räsänen, T., Kolehmainen, M.: Feature-based clustering for electricity use time series data. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.) ICANNGA 2009. LNCS, vol. 5495, pp. 401–412. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04921-7_41

    Chapter  Google Scholar 

  5. Li, X., Bowers, C.P., Schnier, T.: Classification of energy consumption in buildings with outlier detection. IEEE Trans. Ind. Electron. 57(11), 3639–3644 (2010)

    Article  Google Scholar 

  6. Merrick, J.H.: On representation of temporal variability in electricity capacity planning models. Energy Econ. 59, 261–274 (2016)

    Article  Google Scholar 

  7. Hajian, M., Rosehart, W.D., Zareipour, H.: Probabilistic power flow by Monte Carlo simulation with Latin supercube sampling. IEEE Trans. Power Syst. 28, 1550–1559 (2013)

    Article  Google Scholar 

  8. Kabir, M., Mishra, Y., Bansal, R.: Probabilistic load flow for distribution systems with uncertain PV generation. Appl. Energy 163, 343–351 (2016)

    Article  Google Scholar 

  9. Mitra, J., Singh, C.: Incorporating the DC load flow model in the decomposition-simulation method of multi-area reliability evaluation. IEEE Trans. Power Syst. 11(3), 1245–1254 (1996)

    Article  Google Scholar 

  10. Wang, Y., Chen, Q., Kang, C., Zhang, M., Wang, K., Zhao, Y.: Load profiling and its application to demand response: a review. Tsinghua Sci. Technol. 20(2), 117–129 (2015)

    Article  Google Scholar 

  11. Fischer, D., Härtl, A., Wille-Haussmann, B.: Model for electric load profiles with high time resolution for German households. Energy Build. 92, 170–179 (2015)

    Article  Google Scholar 

  12. McInnes, L., Healy, J., Astels, S.: hdbscan: Hierarchical density based clustering. J. Open Source Softw. Open J 2(11) (2017)

    Article  Google Scholar 

  13. Kerber, G.: Aufnahmefähigkeit von Niederspannungsverteilnetzen für die Einspeisung aus Photovoltaikkleinanlagen. Dissertation, Technische Universität München (2011)

    Google Scholar 

  14. Lindner, M., Aigner, C., Witzmann, R., Wirtz, F., Berber, I., Gödde, M., Frings, R.: Aktuelle musternetze zur untersuchung von spannungsproblemen in der niederspannung. In: 14. Symposium Energieinnovation (2016)

    Google Scholar 

  15. Thurner, L., Scheidler, A., Schafer, F. (et.al): Pandapower - an open source python tool for convenient modeling, analysis and optimization of electric power systems. IEEE Trans. Power Syst. 33(6), 6510–6521 (2018)

    Article  Google Scholar 

  16. Kolmogorov, A.: On the empirical determination of a distribution function. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics. SSS, pp. 106–113. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-4380-9_10

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was created within the PrIME (03EK3536A) project and funded by BMBF: Deutsches Bundesministerium für Bildung und Forschung/German Federal Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janosch Henze .

Editor information

Editors and Affiliations

Appendices

Appendix A Detailed Results - Univariate

See Tables 3, 4 and 5

Table 3. Load flow results for the line capacity for the first experiment.
Table 4. Load flow results for the transformer capacity for the first experiment.
Table 5. Load flow results for the node voltage for the first experiment.

Appendix B Detailed Results - Segmentwise Correlation

See Tables 6, 7 and 8

Table 6. Load flow results for the line capacity for the second experiment.
Table 7. Load flow results for the transformer capacity for the second experiment.
Table 8. Load flow results for the node voltage for the second experiment.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Henze, J., Kutzner, S., Sick, B. (2018). Sampling Strategies for Representative Time Series in Load Flow Calculations. In: Woon, W., Aung, Z., Catalina Feliú, A., Madnick, S. (eds) Data Analytics for Renewable Energy Integration. Technologies, Systems and Society. DARE 2018. Lecture Notes in Computer Science(), vol 11325. Springer, Cham. https://doi.org/10.1007/978-3-030-04303-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04303-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04302-5

  • Online ISBN: 978-3-030-04303-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics