Skip to main content

Quinoa: A New Crop for Harsh Environments

  • Chapter
  • First Online:
Sabkha Ecosystems

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 49))

Abstract

Extraordinary adaptations of quinoa caused expansion into different geographic areas with different soil and climate conditions. Water scarcity, soil salinity, and low water quality are main reasons of low food production in the Middle East and North Africa region. Quinoa was considered for food production using saline water and soil in this region. Field experiments in saline area of Iran showed that quinoa (Titicaca cv.) could produce 2.4 t ha−1 seed yield in 14 dS/m saline water and 2.3–3 t ha−1 in 20 dS/m saline water in Turkey and Morocco. Almost 7–10 t ha−1 seed yield was obtained with 16–18 dS/m saline water in UAE. Among the genotype, Titicaca had high yield stability in different climate conditions. The studies in the region showed that quinoa has high adaptation to the agroclimatic conditions and, therefore, has excellent potential as an alternative crop to rehabilitate salt-affected farms which have become uneconomical for the cultivation of the traditionally grown crops. All countries in the region worked on adaptability and agronomic practices. Scaling up the project needs agro-climatologically zoning and selecting appropriate areas with saline water and soil, which are not suitable for conventional crop production and seed processing, marketing, mechanization, and national government policy, for quinoa extension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abugoch James LE (2009) Chapter 1 Quinoa (Chenopodium Quinoa Willd.): composition, chemistry, nutritional, and functional properties. In: Steve LT (ed) Advances in food and nutrition research. Academic, London

    Google Scholar 

  • Adolf V, Shabala S, Andersen M, Razzaghi F, Jacobsen S-E (2012a) Varietal Differences Of Quinoa’s Tolerance To Saline Conditions. Plant Soil 357:117–129

    CAS  Google Scholar 

  • Adolf VI, Jacobsen SE, Shabala S (2012b) Salt tolerance mechanisms in quinoa (Chenopodium Quinoa Willd.). Environ Exp Bot 92:43–54

    Google Scholar 

  • Baig A, Baig M, Ali Q, Khan C (1985) Agro-ecological zonation of pothwar. A. Wheat. B. Maize. Pakistan Agricultural Research Council, Islamabad, 68

    Google Scholar 

  • Bazile D (2014) State of the art report on quinoa around the world in 2013. In: Bazile D (ed) Food and agriculture organization of the United Nations (FAO), Santiago

    Google Scholar 

  • Bazile D, Bertero H, Nieto C (2015) State of the art report on quinoa around the world in 2013, FAO

    Google Scholar 

  • Bazile D, Pulvento C, Verniau A, Al-Nusairi MS, Ba D, Breidy J, Hassan L, Mohammed MI, Mambetov O, Otambekova M, Sepahvand NA, Shams A, Souici D, Miri K, Padulosi S (2016) Worldwide evaluations of quinoa: preliminary results from post international year of quinoa Fao projects in 9 countries. Front Plant Sci 7:850

    PubMed  PubMed Central  Google Scholar 

  • Bendevis MA, Sun Y, Shabala S, Rosenqvist E, Liu F, Jacobsen S-E (2014) Differentiation of photoperiodinduced ABA and soluble sugar responses of two quinoa (Chenopodium quinoa Willd.) cultivars. J Plant Growth Regul 33:562–570

    Google Scholar 

  • Benlhabib O, Jacobsen SE, Jellen EN, Maughan PJ, Choukr-Allah R (2014) Status of quinoa production and research in morocco. In: Bazile D (ed) State of the art report on quinoa around the world in 2013. Food and Agriculture Organization of the United Nations (FAO), Santiago

    Google Scholar 

  • Bertero H, King R, Hall A (1999) Modelling photoperiod and temperature responses of flowering in quinoa (Chenopodium Quinoa Willd.). Field Crop Res 63:19–34

    Google Scholar 

  • Blanco JA (2015) Fodder and animal feed. In: Bazile D, Bertero H, Nieto C (eds) State of the art report on quinoa around the world in 2013. Fao

    Google Scholar 

  • Bois J-F, Winkel T, Lhomme J-P, Raffaillac J-P, Rocheteau A (2006) Response of some andean cultivars of quinoa (Chenopodium Quinoa Willd.) to temperature: effects on germination, phenology, growth and freezing. Eur J Agron 25:299–308

    Google Scholar 

  • Brakez M, El Brik K, Daoud S, Harrouni MC (2013) Performance of chenopodium quinoa under salt stress. In: Developments in soil salinity assessment and reclamation. Springer, Dordrecht

    Google Scholar 

  • Brakez M, Harrouni M, Tachbibi N, Daoud S (2014) Comparative effect of nacl and seawater on germination of quinoa seed (Chenopodium Quinoa Willd). Emirates J Food Agric 26:1091

    Google Scholar 

  • Brakez M, Daoud S, Harrouni MC, Tachbibi N, Brakez Z (2015) Nutritional value of chenopodium quinoa seeds obtained from an open field culture under saline conditions. In: Halophytes for food security in dry lands. Elsevier, Amsterdam, p 37

    Google Scholar 

  • Ceccato D, Bertero D, Batlla D, Galati B (2015) Structural aspects of dormancy in quinoa (Chenopodium Quinoa): importance and possible action mechanisms of the seed coat. Seed Sci Res 25:267–275

    CAS  Google Scholar 

  • Choukr-Allah R, Nanduri KR, Hirich A, Shahid M, Alshankiti A, Toderich K, Gill S, Butt KUR (2016) Quinoa for marginal environments: towards future food and nutritional security in MENA and central Asia regions. Front Plant Sci 7:1–11

    Google Scholar 

  • De Munter JS, Hu FB, Spiegelman D, Franz M, Van Dam RM (2007) Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med 4:E261

    PubMed  PubMed Central  Google Scholar 

  • Dost M (2015) Field evaluation results across locations and identification of suitable quinoa varieties. Project (Tcp/Rab/3403–Fao)

    Google Scholar 

  • Dregne H, Kassas M, Rozanov B (1991) A new assessment of the world status of desertification. Desertification Control Bull 20:6–18

    Google Scholar 

  • Eisa S, Hussin S, Geissler N, Koyro HW (2012) Effect of Nacl salinity on water relations, photosynthesis and chemical composition of quinoa (Chenopodium Quinoa Willd.) As a potential cash crop halophyte. Aust J Crop Sci 6:357–368

    CAS  Google Scholar 

  • El Youssfi L, Choukr-Allah R, Zaafrani M, Mediouni T, Ba Samba M, Hirich A (2012) Effect of domestic treated wastewater use on three varieties of quinoa (Chenopodium Quinoa) under semi arid conditions. World Acad Sci Eng Technol 68:306–309

    Google Scholar 

  • Fghire R, Wahbi S, Anaya F, Issa Ali O, Benlhabib O, Ragab R (2015) Response of quinoa to different water management strategies: field experiments and saltmed model application results. Irrig Drain 64:29–40

    Google Scholar 

  • Filali K (2011) Caractérisation Et Évaluation Du Rendement De Lignées De Quinoa (Chenopodium Quinoa) Dans La Région De Rhamna. Diplôme De Master En Biotechnologies Et Amélioration Génétique Des Productions Agricoles, Institut Agronomique Et Vétérinaire Hassan Ii

    Google Scholar 

  • Filali K, Hirich A, Benlhabib O, Choukr-Allah R, Ragab R (2016) Yield and dry matter simulation using satlmed model for five quinoa (Chenopodium Quinoa) accessions under deficit irrigation in South Morocco. Irrigation and Drainage, In Press

    Google Scholar 

  • Flowers T, Hajibagheri M, Clipson N (1986) Halophytes. Q Rev Biol 61:313–337

    Google Scholar 

  • Garcia M, Condori B, Castillo CD (2015) Agroecological and agronomic cultural practices of quinoa in South America. In: Quinoa: improvement and sustainable production. Wiley, Hoboken, pp 25–46

    Google Scholar 

  • General Directorate Of Soil And Water (1978) Soil resources of Turkey. General Directorate of Soil and Water, Ankara

    Google Scholar 

  • Ghaffari A, Ghasemi VR, De Pauw E (2014) Agro-climatically zoning of Iran by Unesco approach. Iran Dryland Agron J 4:63–95

    Google Scholar 

  • Ghassemi F, Jackman AJ, Nix AH (1995) Salinization of land and water resources. Cab International, Wallingford

    Google Scholar 

  • Hariadi Y, Marandon K, Tian Y, Jacobsen S-E, Shabala S (2011a) Ionic and osmotic relations in quinoa (Chenopodium Quinoa Willd.) Plants grown at various salinity levels. J Exp Bot 62:185–193

    CAS  PubMed  Google Scholar 

  • Hariadi Y, Marandon K, Tian Y, Jacobsen SE, Shabala S (2011b) Ionic and osmotic relations in quinoa (Chenopodium Quinoa Willd.) Plants grown at various salinity levels. J Exp Bot 62:185–193

    CAS  PubMed  Google Scholar 

  • Hirich A (2013) Using deficit irrigation with treated wastewater to improve crop water productivity of sweet corn, chickpea, faba bean and quinoa. Revue Marocaine Des Sciences Agronomiques Et Vétérinaires 2:15–22

    Google Scholar 

  • Hirich A (2014) Effects of deficit irrigation using treated wastewater and irrigation with saline water on legumes, corn and quinoa crops. Phd, Hassan Ii Institue of Agronomy and Veterinary Medicine

    Google Scholar 

  • Hirich A, Choukr-Allah R, Jacobsen S-E, El Yousfi L, El Omari H (2012a) Using Deficit Irrigation With Treated wastewater in the production of quinoa (Chenopodium Quinoa Willd.) in Morocco. Revista Científica Udo Agrícola 12:570–583

    Google Scholar 

  • Hirich A, Choukr-Allah R, Jacobsen S-E, Fahmi H, Rami A, Laajaj K, El Youssfi L, El Omari H (2012b) Etude De L’effet De L’irrigation Déficitaire Et De La Salinité Sur Céréales, Légumineuses Et Quinoa. 1ère Journées Doctoriales De L’institut Agronomique Et Vétérinaire Hassan Ii. Rabat, Maroc

    Google Scholar 

  • Hirich A, Choukr-Allah R, Jacobsen S-E (2013) The combined effect of deficit irrigation by treated wastewater and organic amendment on quinoa (Chenopodium Quinoa Willd.) Productivity. Desalin Water Treat 52:2208–2213

    Google Scholar 

  • Hirich A, Choukr-Allah R, Jacobsen SE (2014a) Deficit irrigation and organic compost improve growth and yield of quinoa and pea. J Agron Crop Sci 200:390–398

    Google Scholar 

  • Hirich A, Choukr-Allah R, Jacobsen SE (2014b) Quinoa in Morocco – effect of sowing dates on development and yield. J Agron Crop Sci 200:371–377

    Google Scholar 

  • Hirich A, Choukr-Allah R, Jelloul A, Jacobsen S-E (2014c) Quinoa (Chenopodium Quinoa Willd.) Seedling, water uptake and yield responses to irrigation water salinity. Acta Hortic 1054:145–152

    Google Scholar 

  • Hirich A, Jelloul A, Choukr-Allah R, Jacobsen SE (2014d) Saline water irrigation of quinoa and chickpea: seedling rate, stomatal conductance and yield responses. J Agron Crop Sci 200:378–389

    CAS  Google Scholar 

  • Jacobsen SE (2003) The worldwide potential for quinoa (Chenopodium Quinoa Willd.). Food Rev Int 19:167–177

    Google Scholar 

  • Jacobsen SE (2014) New climate-proof cropping systems in dry areas of the mediterranean region. J Agron Crop Sci 200:399–401

    Google Scholar 

  • Jacobsen S, Bach A (1998) The influence of temperature on seed germination rate in quinoa (Chenopodium Quinoa Willd). Seed Sci Technol (Switzerland) 26:515–523

    Google Scholar 

  • Jacobsen S, Quispe H, Mujica A (1999) Quinoa: an alternative crop for saline soils in the Andes. Scientist and farmer-partners in research for the 21st century. Cip Prog Rep 2000:403–408

    Google Scholar 

  • Jacobsen S-E, Quispe H,Mujica A (2000) Quinoa: an alternative crop for saline soils in the Andes. Cip Program Report

    Google Scholar 

  • Jacobsen SE, Mujica A, Jensen C (2003) The resistance of quinoa (Chenopodium Quinoa Willd.) To adverse abiotic factors. Food Rev Int 19:99–109

    Google Scholar 

  • Jacobsen S-E, Monteros C, Christiansen J, Bravo L, Corcuera L, Mujica A (2005) Plant responses of quinoa (Chenopodium Quinoa Willd.) To frost at various phenological stages. Eur J Agron 22:131–139

    Google Scholar 

  • Khan MA, Anwar CM (1968) Sand dune rehabilitation in Thal, Pakistan. J Range Manag 21:316–321

    Google Scholar 

  • Khan MA, Gul B (2006) Halophyte Seed Germination. In: Ecophysiology of high salinity tolerant plants. Springer, Dordrecht

    Google Scholar 

  • Koyro HW, Lieth H, Eisa SS (2008) Salt tolerance of Chenopodium Quinoa Willd., grains of the Andes: influence of salinity on biomass production, yield, composition of reserves in the seeds, water and solute relations. Mangroves Halophytes Rest Util:133–145

    Google Scholar 

  • Lavini A, Pulvento C, D’andria R, Riccardi M, Choukr-Allah R, Belhabib O, Incekaya Ç, Metin Sezen S, Qadir M, Jacobsen SE (2014) Quinoa’s potential in the mediterranean region. J Agron Crop Sci 200:344–360

    CAS  Google Scholar 

  • Loftas T, Ross J (1995) Dimensions of need: an atlas of food and agriculture. Food & Agriculture Organisation, Rome

    Google Scholar 

  • Massoud F, Girard M (1978) The use of satellite imagery in detecting and delineating a salt affected soils

    Google Scholar 

  • Mhada M, Jellen E, Jacobsen S, Benlhabib O (2014) Diversity analysis of a quinoa (Chenopodium Quinoa Willd.) germplasm during two seasons. World Acad Sci Eng Technol Int J Biol Biomol Agric Food Biotechnol Eng 8:273–276

    Google Scholar 

  • Munir H, Basra S (2009) Improved germination and seedling vigor enhancement of quinoa (Chenopodium Quinoa Willd.) Grown at different salinity levels. In: Sustainable management of saline waters and salt-affected soils for agriculture: proceedings of the second bridging workshop Aleppo, Syria 15–18 November, Icarda, p 33

    Google Scholar 

  • Negewo BD (2012) Renewable energy desalination: an emerging solution to close the water gap in the middle East and North Africa. World Bank Publications, Washington, DC

    Google Scholar 

  • Nelson M, Maredia M (2001) Environmental impacts of the cgiar: an assessment. A report from Tac’s standing panel on impact assessment. Fao, Rome

    Google Scholar 

  • Nowak V, Du J, Charrondiere UR (2015) Assessment of the nutritional composition of quinoa (Chenopodium Quinoa Willd.). Food Chem

    Google Scholar 

  • Nsimba RY, Kikuzaki H, Konishi Y (2008) Antioxidant activity of various extracts and fractions of Chenopodium Quinoa And Amaranthus Spp. seeds. Food Chem 106:760–766

    Google Scholar 

  • Oldeman L, Hakkeling R, Sombrock W (1991) Global assessment of soil degradation (Glasod). World map of the status of human–induced soil degradation, Isric Wageningen

    Google Scholar 

  • Oussible M, Baamal L, Yousfi Y, Belcaid M, Benlhabib O (2013) The effect of different soil tillage systems on the stand establishment and grain yield of quinoa crop in Morocco. In: Choukr-Allah R (Ed) International conference on sustainable water use for securing food production in the mediterranean region under changing climate. Agadir, Morocco

    Google Scholar 

  • Panta S, Flowers T, Lane P, Doyle R, Haros G, Shabala S (2014) Halophyte agriculture: success stories. Environ Exp Bot 107:71–83

    Google Scholar 

  • Pedersen SM, Benlhabib O, Xhoxhi O, Lind KMH, Ørum JE (2013) Farmers perception of quinoa-experience from bouchane region in Morocco and Adana in Turkey. Proceeding: sustainable water use for securing food production in the mediterranean region under chainging climate, Agadir, Morocco

    Google Scholar 

  • Pulvento C, Riccardi M, Lavini A, Iafelice G, Marconi E, D’andria R (2012) Yield and quality characteristics of quinoa grown in open field under different saline and non-saline irrigation regimes. J Agron Crop Sci 198:254–263

    CAS  Google Scholar 

  • Rao N, Shahid M (2012) Quinoa–a promising new crop for the Arabian Peninsula. Am Eurasian J Agric Environ Sci 12:1350–1355

    Google Scholar 

  • Rao NK, Rahman K, Ismail S (2013) Quinoa: prospects as an alternative crop for salt-affected areas. In: Hall R, Rudebjer P, Padulosi S (eds) 3rd international conference on neglected and under-utilized species (Nus) For Food Secure Africa In Book Of Abstracts

    Google Scholar 

  • Razzaghi F, Ahmadi SH, Adolf VI, Jensen CR, Jacobsen SE, Andersen MN (2011) Water relations and transpiration of quinoa (Chenopodium Quinoa Willd.) under salinity and soil drying. J Agron Crop Sci 197:348–360

    Google Scholar 

  • Razzaghi F, Ahmadi SH, Jacobsen SE, Jensen CR, Andersen MN (2012) Effects of salinity and soil–drying on radiation use efficiency, water productivity and yield of quinoa (Chenopodium Quinoa Willd.). J Agron Crop Sci 198:173–184

    CAS  Google Scholar 

  • Repo-Carrasco R, Espinoza C, Jacobsen S-E (2003) Nutritional value and use of the andean crops quinoa (Chenopodium Quinoa) and Kañiwa (Chenopodium Pallidicaule). Food Rev Int 19:179–189

    Google Scholar 

  • Ruiz-Carrasco K, Antognoni F, Coulibaly AK, Lizardi S, Covarrubias A, Martãnez EA, Molina-Montenegro MA, Biondi S, Zurita-Silva AS (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium Quinoa Willd.) As assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Biochem 49:1333–1341

    CAS  PubMed  Google Scholar 

  • Sepahvand NA (2012) Investigation on adaptation, phonological and agronomical characters and quality of quinoa in Iran. Final report, agricultural research, education & extension organization, Project Grant Number 2-03-03-86275

    Google Scholar 

  • Shams A (2011a) Combat degradation in rain fed areas by introducing: new drought tolerant crops in Egypt. Int J Water Res Arid Environ 1:318–325

    Google Scholar 

  • Shams A (2011b) Response of quinoa to nitrogen fertilizer rates under sandy soil conditions. Int J Water Res Arid Environ 1:318–325

    Google Scholar 

  • Umali DL (1993) Irrigation-induced salinity: a growing problem for development and the environment. World Bank Publications, Washington, DC

    Google Scholar 

  • Verdier F (2011) Mena regional water outlook part II desalination using renewable energy task 1–desalination potential. Fichtner Stuttgart

    Google Scholar 

  • Wilson J (1932) Notes on the biology of Laphygma Exigua Hübner. Fla Entomol 16:33–39

    Google Scholar 

  • Yazar A, Incekaya Ç, Sezen SM, Jacobsen S-E (2015) Saline water irrigation of quinoa (Chenopodium Quinoa) under mediterranean conditions. Crop Pasture Sci 66:993–1002

    CAS  Google Scholar 

  • Zevallos V, Herencia L, Ciclitira P (2015) Quinoa, coeliac disease and gluten-free diet. In: Bazile D, Bertero H, Nieto C (eds) State of the art report on quinoa around the world in 2013. FAO, Rome

    Google Scholar 

Download references

Acknowledgments

Thanks to Mohammad Shahid and Khalil Ur Rahman Butt for assisting in the fieldwork and in the data collection in UAE. Thanks to Dr. Basra, Dr. Shahid, and Dr. Jalal Kamli for sending germplasm to Iran and Vali Soltani, Hassan Zare, and Seyyed Jalil Hasheminasab for fieldwork and data collection in Iran.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nanduri, K.R., Hirich, A., Salehi, M., Saadat, S., Jacobsen, S.E. (2019). Quinoa: A New Crop for Harsh Environments. In: Gul, B., Böer, B., Khan, M., Clüsener-Godt, M., Hameed, A. (eds) Sabkha Ecosystems. Tasks for Vegetation Science, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-04417-6_19

Download citation

Publish with us

Policies and ethics