Skip to main content

Cerebral Arterial Compliance in Polytraumazed Patients with Cerebral Vasospasm

  • Chapter
  • First Online:
Subarachnoid Hemorrhage

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 127))

Abstract

The purpose was to determine the status of the cerebral arterial compliance (cAC) in a concomitant head injury and cerebral vasospasm (CVS) with and without the development of intracranial hematomas (ICH). In Materials and Methods, we examined 80 polytrauma patients with severe TBI and CVS. During or immediately after dynamic helical computed tomography angiography (DHCTA), the monitoring of the transcranial Doppler of the MCA was recorded bilaterally with 2-MHz probes. The cerebral blood volumes were calculated from the DHCTA data with complex mathematical procedures using the “direct flow model” algorithm. In Results, CAC was significantly decreased (p < 0.001) in both the first and second group TBI and CVS (with or without ICH) in comparison with normal data (p < 0.001) and TBI without CVS. The cAC was significantly decreased on the side of the former hematoma with CVS than on the contralateral side with CVS (р = 0.003). In Conclusion, the cAC in TBI and CVS gets significantly lower as compared to the normal condition (p < 0.001). After removal of the ICH and development of CVS, the compliance in the perifocal zone remains much lower (р = 0.003) as compared to compliance of the other brain hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loret JE, Zemmoura I, Daumas-Duport B, Buffenoir K, Paulus J. Delayed post traumatic vasospasm leading to ischemia in a patient with mild traumatic brain injury. J Neurol Disord Stroke. 2013;1(2):10–4.

    Google Scholar 

  2. Pluta RM, Hansen-Schwartz J, Dreier J. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31(2):151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oertel M, Boscardin WJ, Obrist WD, Glenn TC, McArthur DL, Gravori T. Posttraumatic vasospasm: the epidemiology, severity, and time course of an underestimated phenomenon: a prospective study performed in 299 patients. J Neurosurg. 2005;103:812–24.

    Article  PubMed  Google Scholar 

  4. Shahlaie K, Keachie K, Hutchins IM, Rudisill N, Madden LK, Smith KA. Risk factors for posttraumatic vasospasm. J Neurosurg. 2011;115:602–11.

    Article  PubMed  Google Scholar 

  5. Cernak I, Vink R, Zapple D. The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats. Neurobiol Dis. 2004;17:29–43. https://doi.org/10.1016/j.nbd.2004.05.011.

    Article  CAS  PubMed  Google Scholar 

  6. Herz DA, Baez S, Shulman K. Pial microcirculation in subarachnoid hemorrhage. Stroke. 1975;6:417–24.

    Article  CAS  PubMed  Google Scholar 

  7. Ohkuma H, Itoh K, Shibata S. Morphological changes of intraparenchymal arterioles after experimental subarachnoid hemorrhage in dogs. Neurosurgery. 1997;41:230–5.

    Article  CAS  PubMed  Google Scholar 

  8. Yundt KD, Grubb RL Jr, Diringer MN. Autoregulatory vasodilation of parenchymal vessels is impaired during cerebral vasospasm. J Cereb Blood Flow Metab. 1998;18:419–24.

    Article  CAS  PubMed  Google Scholar 

  9. Hart MN. Morphometry of brain parenchymal vessels following subarachnoid hemorrhage. Stroke. 1980;11:653–35.

    Article  CAS  PubMed  Google Scholar 

  10. Brown RJ, Kumar A, Ilodigwe D. The relationship between delayed infarcts and angiographic vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2013;72:702–8.

    Article  PubMed  Google Scholar 

  11. Alexandrov AV. Neurovascular examination: the rapid evaluation of stroke patients using ultrasound waveform interpretation. Oxford: Blackwell Publishing Ltd; 2013.

    Book  Google Scholar 

  12. Avezaat CJJ. Cerebrospinal fluid pulse pressure and craniospatial dynamics. A theoretical, clinical and experimental study. Rotterdam: Erasmus University; 1984.

    Google Scholar 

  13. de Jong S. Quantifying cerebral blood flow of both the micro- and macrovascular system using perfusion computed tomography. Twente: The Netherlands; 2015.

    Google Scholar 

  14. Ikdip K. Exploring differences in vascular aging and cerebrovascular hemodynamics between older adults of White Caucasian and South Asian origin. Waterloo: Ontario; 2014.

    Google Scholar 

  15. Fitch W, Ferguson GG, Sengupta D. Autoregulation of cerebral blood flow during controlled hypotension in baboons. J Neurol Neurosurg Psychiatry. 1976;39:1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rasmussen G, Hauerberg J, Waldemar G. Cerebral blood flow autoregulation in experimental subarachnoid haemorrhage in rat. Acta Neurochir. 1992;119:128–33.

    Article  CAS  PubMed  Google Scholar 

  17. Hattingen E, Blasel S, Dettmann E. Perfusion-weighted MRI to evaluate cerebral autoregulation in aneurysmal subarachnoid haemorrhage. Neuroradiology. 2008;50:929–38.

    Article  PubMed  Google Scholar 

  18. Weidauer S, Lanfermann H, Raabe A. Impairment of cerebral perfusion and infarct patterns attributable to vasospasm after aneurysmal subarachnoid hemorrhage: a prospective MRI and DSA study. Stroke. 2007;38:1831–6.

    Article  PubMed  Google Scholar 

  19. Crowley RW, Medel R, Dumont AS. Angiographic vasospasm is strongly correlated with cerebral infarction after subarachnoid hemorrhage. Stroke. 2011;42:919–23.

    Article  PubMed  Google Scholar 

  20. Martin NA, Doberstein C, Zane C, Caron MJ, Thomas K, Becker DP. Posttraumatic cerebral arterial spasm: transcranial Doppler ultrasound, cerebral blood flow, and angiographic findings. J Neurosurg. 1992;77:575–83.

    Article  CAS  PubMed  Google Scholar 

  21. Weber M, Grolimund P, Seiler RW. Evaluation of posttraumatic cerebral blood flow velocities by transcranial Doppler ultrasonography. Neurosurgery. 1990;27:106–12.

    Article  CAS  PubMed  Google Scholar 

  22. Westermaier T, Pham M, Stetter C. Value of transcranial Doppler, perfusion-CT and neurological evaluation to forecast secondary ischemia after aneurysmal SAH. Neurocrit Care. 2014;20(3):406–12. https://doi.org/10.1007/s12028-013-9896-0.

    Article  PubMed  Google Scholar 

  23. Furuya Y, Hlatky R, Valadka A. Comparison of cerebral blood flow in computed tomographic hypodense areas of the brain in head-injured patients. Neurosurgery. 2003;52:340–6. https://doi.org/10.1227/01.neu.0000043931.83041.aa.

    Article  PubMed  Google Scholar 

  24. Zubkov AY, Lewis AI, Raila FA, Zhang J, Parent AD. Risk factors for the development of post-traumatic cerebral vasospasm. Surg Neurol. 2000;53:126–30.

    Article  CAS  PubMed  Google Scholar 

  25. Marmarou A. A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg Focus. 2007;22(5):E1. https://doi.org/10.3171/foc.2007.22.5.2.

    Article  PubMed  Google Scholar 

  26. Glushakova OY, Johnson D, Hayes RL. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage. J Neurotrauma. 2014;31:1180–93.

    Article  PubMed  Google Scholar 

  27. Dhar R, Diringer MN. Relationship between angiographic vasospasm, cerebral blood flow, and cerebral infarction after subarachnoid hemorrhage. Acta Neurochir Suppl. 2015;120:161–5. https://doi.org/10.1007/978-3-319-04981-6_27.

    Article  PubMed  Google Scholar 

  28. Østergaard L, Engedal T, Aamand R. Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury. J Cereb Blood Flow Metab. 2014;34:1585–98. https://doi.org/10.1038/jcbfm.2014.131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rey F, Li X, Carretero O. Perivascular superoxide anion contributes to impairment of endothelium-dependent relaxation: role of gp91(phox). Circulation. 2002;106(19):2497–502. https://doi.org/10.1161/01.cir.0000038108.71560.70.

    Article  CAS  PubMed  Google Scholar 

  30. Armin SS, Colohan AR, Zhang JH. Vasospasm in traumatic brain injury. Acta Neurochir Suppl. 2008;104:421–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Armulik A, Genove G, Mae M. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61. https://doi.org/10.1038/nature09522.

    Article  CAS  PubMed  Google Scholar 

  32. Bullock R, Maxwell W, Graham D. Glial swelling following human cerebral contusion: an ultrastructural study. J Neurol Neurosurg Psychiatry. 1991;54:427–34. https://doi.org/10.1136/jnnp.54.5.427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dore-Duffy P, Wang S, Mehedi A. Pericyte-mediated vasoconstriction underlies TBI-induced hypoperfusion. Neurol Res. 2011;33:176–86. https://doi.org/10.1179/016164111x12881719352372.

    Article  CAS  PubMed  Google Scholar 

  34. Hall C, Reynell C, Gesslein B. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508:55–60. https://doi.org/10.1038/nature13165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kreipke C, Schafer PC, Rossi NF. Differential effects of endothelin receptor A and B antagonism on cerebral hypoperfusion following traumatic brain injury. Neurol Res. 2010;32:209–14. https://doi.org/10.1179/174313209x414515.

    Article  CAS  PubMed  Google Scholar 

  36. Yemisci M, Gursoy-Ozdemir Y, Vural A. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009;15:1031–7. https://doi.org/10.1038/nm.2022.

    Article  CAS  PubMed  Google Scholar 

  37. Ursino M, Lodi C. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol. 1997;82:1256–69. https://doi.org/10.1007/bf02368459.

    Article  CAS  PubMed  Google Scholar 

  38. Vollmar B, Westermann S, Menger M. Microvascular response to compartment syndrome-like external pressure elevation: an in vivo fluorescence microscopic study in the hamster striated muscle. J Trauma. 1999;46:91–6. https://doi.org/10.1097/00005373-199901000-00015.

    Article  CAS  PubMed  Google Scholar 

  39. Bragin D, Bush R, Muller W. High intracranial pressure effects on cerebral cortical microvascular flow in rats. J Neurotrauma. 2011;28:775–85. https://doi.org/10.1089/neu.2010.1692.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rhee C, Fraser C, Kibler K, Easley B. Ontogeny of cerebrovascular critical closing pressure. Pediatr Res. 2015:1–5. https://doi.org/10.1038/pr.2015.6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

D.B. was supported by NIH P20GM109089, DOD DM160142 and RSF No. 17-15-01263.

Conflict of Interest: We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trofimov, A., Dobrzeniecki, M., Bragin, D.E. (2020). Cerebral Arterial Compliance in Polytraumazed Patients with Cerebral Vasospasm. In: Martin, R., Boling, W., Chen, G., Zhang, J. (eds) Subarachnoid Hemorrhage. Acta Neurochirurgica Supplement, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-04615-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04615-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04614-9

  • Online ISBN: 978-3-030-04615-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics