Skip to main content

An Empirical Analysis of Feasibility Checking Algorithms for UTVPI Constraints

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11343))

Included in the following conference series:

Abstract

In this paper, we document the results of a detailed implementation study of two different algorithms for checking real (linear) and integer feasibility in a conjunction of Unit Two Variable per Inequality (UTVPI) constraints. Recall that a UTVPI constraint is a linear relationship of the form: \(a\cdot x_{i}+b\cdot x_{j} \le c_{ij}\), where \(a,b \in \{-1,0,1\}\). A conjunction of UTVPI constraints is called a UTVPI constraint system (UCS). UTVPI constraints subsume difference constraints. Unlike difference constraints, the linear and integer feasibilities for UCSs do not coincide. UCSs find applications in a number of different domains such as abstract interpretation, packing, and covering. There exist several algorithms for UCS linear feasibility and integer feasibility with various running times. We will focus on the linear feasibility algorithms in [19] (\(LF_1\)) and [13] (\(LF_2\)). We also focus on the integer feasibility algorithms in [18] (\(IF_1\)) and [13] (\(IF_2\)). We compare our implementations to the Yices SMT solver [17] running linear real arithmetic (QF_LRA) and linear integer arithmetic (QF_LIA). Our experiments indicate that \(LF_1\) is moderately superior to \(LF_2\) in terms of time, and that \(IF_1\) is vastly superior to \(IF_2\) in terms of time. Additionally on small inputs the Yices Solver performs better than the implemented algorithms, however the implemented algorithms perform much better on larger inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Prentice-Hall, Upper Saddle River (1993)

    MATH  Google Scholar 

  2. Anderson, M., Wojciechowski, P., Subramani, K.: Generator for systems of UTVPI constraints. https://www.dropbox.com/sh/qjcyey8mtyd8mkh/AABPktep24zf6vzw00TRFLjHa?dl=0

  3. Anderson, M., Wojciechowski, P., Subramani, K.: Implementaions of UTVPI algorithms. https://www.dropbox.com/sh/6x4pzwm98a7djq8/AACKiGVNjfjHU1p23IAXDyS1a?dl=0

  4. Bagnara, R., Hill, P.M., Zaffanella, E.: Weakly-relational shapes for numeric abstractions: improved algorithms and proofs of correctness. Formal Methods Syst. Des. 35(3), 279–323 (2009)

    Article  Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  6. Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for DPLL(T). In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–183. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_19

    Chapter  MATH  Google Scholar 

  7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)

    Google Scholar 

  8. Cox, I.J., Rao, S.B., Zhong, Y.: Ratio regions: a technique for image segmentation. In: Proceedings of the International Conference on Pattern Recognition, pp. 557–564. IEEE, August 1996

    Google Scholar 

  9. Gerber, R., Pugh, W., Saksena, M.: Parametric dispatching of hard real-time tasks. IEEE Trans. Comput. 44(3), 471–479 (1995)

    Article  Google Scholar 

  10. Han, C.C., Lin, K.J.: Job scheduling with temporal distance constraints. Technical report UIUCDCS-R-89-1560, University of Illinois at Urbana-Champaign, Department of Computer Science (1989)

    Google Scholar 

  11. Harvey, W., Stuckey, P.J.: A unit two variable per inequality integer constraint solver for constraint logic programming. In: Proceedings of the 20th Australasian Computer Science Conference, pp. 102–111 (1997)

    Google Scholar 

  12. Jaffar, J., Maher, M.J., Stuckey, P.J., Yap, H.C.: Beyond finite domains. In: Proceedings of the Second International Workshop on Principles and Practice of Constraint Programming (1994)

    Google Scholar 

  13. Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI constraints. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 168–183. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306_9

    Chapter  Google Scholar 

  14. Miné, A.: The octagon abstract domain. Higher-Order Symb. Comput. 19(1), 31–100 (2006)

    Article  MathSciNet  Google Scholar 

  15. Revesz, P.Z.: Tightened transitive closure of integer addition constraints. In: SARA (2009)

    Google Scholar 

  16. Sitzmann, I., Stuckey, P.J.: O-trees: a constraint-based index structure. In: Australasian Database Conference, pp. 127–134 (2000)

    Google Scholar 

  17. SRI International. Yices: An SMT solver. http://yices.csl.sri.com/

  18. Subramani, K., Wojciechowski, P.: Analyzing lattice point feasibility in UTVPI constraints. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 615–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_39

    Chapter  Google Scholar 

  19. Subramani, K., Wojciechowski, P.J.: A combinatorial certifying algorithm for linear feasibility in UTVPI constraints. Algorithmica 78(1), 166–208 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment of Support and Disclaimer

(a) Contractor acknowledges Government’s support in the publication of this paper. This material is based upon work funded by AFRL/AFOSR Summer Faculty Fellowship Program and the Information Institute, under AFRL Contract Nos. FA8750-16-3-6003 and FA9550-15-F-0001.

(b) Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of AFRL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Wojciechowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Subramani, K., Wojciechowski, P., Santer, Z., Anderson, M. (2018). An Empirical Analysis of Feasibility Checking Algorithms for UTVPI Constraints. In: Tang, S., Du, DZ., Woodruff, D., Butenko, S. (eds) Algorithmic Aspects in Information and Management. AAIM 2018. Lecture Notes in Computer Science(), vol 11343. Springer, Cham. https://doi.org/10.1007/978-3-030-04618-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04618-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04617-0

  • Online ISBN: 978-3-030-04618-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics