Skip to main content

Nanoparticles and Molecular Delivery System for Nutraceuticals Bioavailability

  • Chapter
  • First Online:
Nutraceuticals in Veterinary Medicine

Abstract

This contribution discusses methods for transferring exogenous materials and drugs, particularly, into biological tissues. The focus is on matrices such as micelles, vesicles, and oil-based dispersions as well as carbon nanotubes. An ensemble of physical forces takes a fundamental role in drug dispersion and includes van der Waals (vdW), steric (ST), double layer, (DL), osmotic (OS), etc. Combination of these forces is responsible for drug uptake in matrices and for their release in tissues. Uptake of exogenous either macro- or small molecules into cargo particles and their transfer to recipient cells is the result of complex processes, concomitant to drug partition among supramolecular aggregates and the bulk. Similar conclusions apply to drug release, mostly as to the kinetic features are concerned; therefore, adsorption of nutraceuticals and release within target organs are particularly relevant. These complex features can be accounted for on thermodynamic grounds and expressed as the combination of different forces. In what follows some details on the energies to be considered are outlined. These include terms controlling the fate of transfectants. We will consider first the forces responsible for the formation of such supramolecular entities on physicochemical grounds and the drug uptake; finally, we will review the actual possibility of transfecting cargo-mediated aggregates of nanoparticle/drug complexes to cells or tissues of interest and their bioactivity upon release within the cell matrix.

Gianfranco Risuleo is on retirement.

Obituary: The chapters authored by C. La Mesa and G. Risuleo are dedicated to the memory of Adalberto Bonincontro, an outstanding collaborator but, mainly, a lifelong friend. Most of the work reviewed here would have not been possible without his continuous, active participation, and support. Many works co-authored by the three of us are to be found among the references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Genius is one percent inspiration, ninety-nine percent perspiration.” Oral statement reported by Harper’s Monthly, September 1932.

References

  • Aiello C, Andreozzi P, La Mesa C et al (2010) Biological activity of SDS-CTAB cat-anionic vesicles in cultured cells and assessment of their cytotoxicity ending in apoptosis. Colloids Surf B Biointerfaces 78:149–154

    CAS  PubMed  Google Scholar 

  • Ajayan PM, Ebbesen TW, Ichihashi T et al (1993) Opening carbon nanotubes with oxygen and implications for filling. Nature 362:522–525

    CAS  Google Scholar 

  • Alargova RG, Danov KD, Petkov JT et al (1997) Sphere-to-rod transition in the shape of anionic surfactant micelles determined by surface tension measurements. Langmuir 13:5544–5551

    CAS  Google Scholar 

  • Amenta V, Aschberger K (2015) Carbon nanotubes: potential medical applications and safety concerns. Interdiscip Rev Nanomed Nanobiotechnol 7:371–386

    CAS  Google Scholar 

  • Andersson JT, Schräder W (1999) A method for measuring 1-octanol/water partition coefficients. Anal Chem 71:3610–3614

    CAS  Google Scholar 

  • Arroyo M, Belytschko T (2004) Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys Rev B 69:115415–115420

    Google Scholar 

  • Bandyopadhyaya R, Nativ-Roth E, Regev O (2002) Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett 2:25–28

    CAS  Google Scholar 

  • Barbetta A, Pucci C, Tardani F et al (2011) Size and charge modulation of surfactant-based vesicles. J Phys Chem B 115:12751–12758

    CAS  PubMed  Google Scholar 

  • Barkat A, Barkat AK, Naveed A et al (2011) Basics of pharmaceutical emulsions: a review. Afr J Pharm Pharmacol 525:2715–2725

    Google Scholar 

  • Bianco A (2013) Graphene: safe or toxic? The two faces of the medal. Angew Chem Int Ed Engl 52:4986–4997

    CAS  PubMed  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    CAS  PubMed  Google Scholar 

  • Bianco A, Cheng H-M, Enoki T et al (2013) All in the graphene family—A recommended nomenclature for two-dimensional carbon materials. Carbon 65:1–6

    CAS  Google Scholar 

  • Bolhassani A, Rafati S (2011) Non-viral delivery systems in gene therapy and vaccine developments. In: Xu-bo Y (ed) Non-viral gene therapy. Intech, Rijeka, Croatia, pp 27–50

    Google Scholar 

  • Bombelli C, Bordi F, Ferro S, Giansanti L et al (2008) New cationic liposomes as vehicles of m-tetrahydroxyphenylchlorin in photodynamic therapy of infectious diseases. Mol Pharm 5:672–679

    CAS  PubMed  Google Scholar 

  • Bomboi F, Tardani F, Gazzoli D et al (2013) Lysozyme binds onto functionalized carbon nanotubes. Colloids Surf B Biointerfaces 108:16–22

    CAS  PubMed  Google Scholar 

  • Bonincontro A, Risuleo G (2015) Electrorotation: a spectroscopic imaging approach to study the alterations of the cytoplasmic membrane. Adv J Mol Imaging 5:1–15

    Google Scholar 

  • Bonincontro A, La Mesa C, Proietti C, Risuleo G (2007) A biophysical investigation on the binding and controlled DNA release in a cetyltrimethylammonium bromide-sodium octyl sulfate cat-anionic vesicle system. Biomacromolecules 8:1824–1829

    CAS  PubMed  Google Scholar 

  • Bonincontro A, Falivene M, La Mesa C, Risuleo G (2008) Dynamics of DNA adsorption on and release from SDS-DDAB cat-anionic vesicles: a multitechnique study. Langmuir 24:1973–1978

    CAS  PubMed  Google Scholar 

  • Cammasab S, Suzuki K, Sone C et al (1997) Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J Control Release 48:157–164

    Google Scholar 

  • Coey AT, Sahu ID, Gunasekera TS et al (2011) Reconstitution of KCNE1 into lipid bilayers: comparing the structural, dynamic, and activity differences in micelle and vesicle environments. Biochemistry 50:10851–10859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colomer A, Pinazo A, García MT et al (2012) pH-sensitive surfactants from lysine: assessment of their cytotoxicity and environmental behavior. Langmuir 28:5900–5912

    CAS  PubMed  Google Scholar 

  • Cosimati R, Milardi GL, Bombelli C, Bonincontro A et al (2013) Interactions of DMPC and DMPC/gemini liposomes with the cell membrane investigated by electrorotation. Biochim Biophys Acta 1828:352–356

    CAS  PubMed  Google Scholar 

  • De Gennes PG (1981) Polymer solutions near an interface. Adsorption and depletion layers. Macromolecules 14:1637–1642

    Google Scholar 

  • Degouy A, Gomez-Berrada MP, Ferret PJ (2014) Baby care product development: artificial urine in vitro assay is useful for cosmetic product assessment. Toxicol In Vitro 28:3–7

    CAS  PubMed  Google Scholar 

  • Deshantri AK, Varela Moreira A, Ecker V et al (2018) Nanomedicines for the treatment of hematological malignancies. J Control Release 287:194–215

    CAS  PubMed  Google Scholar 

  • Fadel TR, Fahmy TM (2014) Immunotherapy applications of carbon nanotubes: from design to safe applications. Trends Biotechnol 32:198–209

    CAS  PubMed  Google Scholar 

  • Florence AT, Attwood D (1988) Physicochemical principles of pharmacy, II edn. MacMillan, London

    Google Scholar 

  • Freire JM, Gaspar D, Veiga AS et al (2015) Shifting gear in antimicrobial and anticancer peptides biophysical studies: from vesicles to cells. J Pept Sci 21:178–185

    CAS  PubMed  Google Scholar 

  • Gollavelli G, Ling YC (2012) Multi-functional graphene as an in vitro and in vivo imaging probe. Biomaterials 33:2532–2545

    CAS  PubMed  Google Scholar 

  • Grumezescu AM (2018) Vesicle-based drug carriers: liposomes, polymersomes, and niosomes. In: Dan N (ed) Design and development of new nanocarriers. Elsevier, Oxford,. Chapt. 1, pp 1–55

    Google Scholar 

  • Guo X, Dong S, Petersen EJ et al (2013) Biological uptake and depuration of radio-labeled graphene by Daphnia magna. Environ Sci Technol 47:12524–12531

    CAS  PubMed  Google Scholar 

  • Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3:436–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han L, Xu J, Xu Q et al (2017) Extracellular vesicles in the tumor microenvironment: therapeutic resistance, clinical biomarkers, and targeting strategies. Med Res Rev 37(6):1318–1349

    CAS  PubMed  Google Scholar 

  • Hayashi S, Ikeda SJ (1980) Micelle size and shape of sodium dodecyl sulfate in concentrated sodium chloride solutions. J Phys Chem 84:744–751

    CAS  Google Scholar 

  • Heidarli E, Dadashzadeh S, Haeri A (2017) State of the art of stimuli-responsive liposomes for cancer therapy. Iran J Pharm Res. 16:1273–1304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heister E, Brunner EW et al (2013) Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl Mater Interfaces 5:1870–1891

    CAS  PubMed  Google Scholar 

  • Holt BD, Short PA, Rape AD et al (2010) Carbon nanotubes reorganize actin structures in cells and ex vivo. ACS Nano 4:4872–4878

    CAS  PubMed  Google Scholar 

  • Hone J, Whitney M, Piskoti C et al (1999) Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 59:R2514–R2516

    CAS  Google Scholar 

  • Hu X, Zhou Q (2013) Health and ecosystem risks of graphene. Chem Rev 113:3815–3835

    CAS  PubMed  Google Scholar 

  • Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4:275–295

    Google Scholar 

  • Islam MF, Rojas E, Bergey DM et al (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269–273

    CAS  Google Scholar 

  • Israelachvili J, Mitchell DJ, Ninham BWJ (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 72:1525–1568

    CAS  Google Scholar 

  • Israelachvili JN, Mitchell DJ, Ninham BW (1977) Theory of self-assembly of lipid bilayers and vesicles. Biochim Biophys Acta 470:185–201

    CAS  PubMed  Google Scholar 

  • Joseph A, Itskovitz-Copper N, Samira S et al (2006) A new intranasal influenza vaccine based on a novel polycationic lipid—ceramide carbamoyl-spermine (CCS): I. Immunogenicity and efficacy studies in mice. Vaccine 24:3990–4006

    CAS  PubMed  Google Scholar 

  • Jung HT, Coldren B, Zasadzinski JA et al (2001) The origins of stability of spontaneous vesicles. Proc Natl Acad Sci USA 98:1353–1357

    CAS  PubMed  Google Scholar 

  • Karthik VV (2016) Excipients used in the formulation of tablets. Res Rev J Chem 5:143–154

    Google Scholar 

  • Krishna VD, Wu K, Su D et al (2018) Nanotechnology: of concepts and potential application of sensing platforms in food safety. Food Microbiol 75:47–54

    CAS  PubMed  Google Scholar 

  • Kuo JH, Jan MS, Chang CH et al (2005) Cytotoxicity characterization of catanionic vesicles in RAW 264.7 murine macrophage-like cells. Colloids Surf B Biointerfaces 41:189–196

    CAS  PubMed  Google Scholar 

  • La Mesa C (2005) Polymer-surfactant and protein-surfactant interactions. J Colloid Interface Sci 286:148–157

    PubMed  Google Scholar 

  • Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616

    CAS  Google Scholar 

  • Letizia C, Andreozzi P, Scipioni A et al (2007) Protein binding onto surfactant-based synthetic vesicles. J Phys Chem B 111:898–908

    CAS  PubMed  Google Scholar 

  • Liang F, Chen B (2010) A review on biomedical applications of single-walled carbon nanotubes. Curr Med Chem 17:10–24

    CAS  PubMed  Google Scholar 

  • Liu P (2005) Modifications of carbon nanotubes with polymers. Eur Polym J 41:2693–2703

    CAS  Google Scholar 

  • Lo CT, Jahn A, Locascio LE et al (2010) Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing. Langmuir 26:8559–8566

    CAS  PubMed  Google Scholar 

  • Loftsson T, Jarho P, Másson M et al (2005) Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2:335–351

    CAS  PubMed  Google Scholar 

  • Lonez C, Vandenbranden M, Ruysschaert J-M (2008) Cationic liposomal lipids: from gene carriers to cell signaling. Progr Lipid Res 47:340–347

    CAS  Google Scholar 

  • Louzao I, van der Hest JCM (2013) Permeability effects on the efficiency of antioxidant nanoreactors. Biomacromolecules 14:2364–2372

    CAS  PubMed  Google Scholar 

  • Lozano N, Pinazo A, La Mesa C et al (2009) Catanionic vesicles formed with arginine-based surfactants and 1,2-dipalmitoyl-sn-glycero-3-phosphate monosodium salt. Phys Chem B 113:6321–6327

    CAS  Google Scholar 

  • Lozano N, Perez L, Pons R, Pinazo A (2011) Diacyl glycerol arginine-based surfactants: biological and physicochemical properties of catanionic formulations. Amino Acids 40:721–729

    CAS  PubMed  Google Scholar 

  • Ménard-Moyon C, Kostarelos K, Prato M et al (2010) Functionalized carbon nanotubes for probing and modulating molecular functions. Chem Biol 17:107–115

    PubMed  Google Scholar 

  • Mezei A, Pérez L, Pinazo A et al (2012) Self-assembly of pH-sensitive cationic lysine based surfactants. Langmuir 28:16761–16771

    CAS  PubMed  Google Scholar 

  • Mohajeri M, Behnam B, Sahebkar A (2018) Biomedical applications of carbon nanomaterials: drug and gene delivery potentials. J Cell Physiol. https://doi.org/10.1002/jcp.26899

    PubMed  Google Scholar 

  • Monk CB (1961) Electrolytic dissociation. Academic, New York

    Google Scholar 

  • Moriguchi I, Shuichi Hirono S, Qian Liu Q et al (1992) Simple method of calculating octanol/water partition coefficient. Chem Pharm Bull 40:127–130

    CAS  Google Scholar 

  • Moroi Y, Matuura RJ (1988) Thermodynamics of solubilization into surfactant micelles: effect of hydrophobicity of both solubilizate and surfactant molecules. J Colloid Interface Sci 125:456–462

    CAS  Google Scholar 

  • Morris J, Olsson U, Wennerström H (1997) Homogeneous nucleation in a mono-disperse oil-in-water emulsion. Langmuir 13:606–608

    CAS  Google Scholar 

  • Mouchet F, Landois P, Datsyuk V et al (2011) International amphibian micronucleus standardized procedure (ISO 21427-1) for in vivo evaluation of double-walled carbon nanotubes toxicity and genotoxicity in water. Environ Toxicol 26:136–145

    CAS  PubMed  Google Scholar 

  • Muzi L, Ménard-Moyon C, Russier J et al (2015a) Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes. Nanoscale 7:5383–5394

    CAS  PubMed  Google Scholar 

  • Muzi L, Ménard-Moyon C, Russier J et al (2015b) A comparative study on the anticancer efficacy of two types of functionalized multi-walled carbon nanotubes filled with a cisplatin prodrug. Nanoscale 7:5383–5394

    CAS  PubMed  Google Scholar 

  • Muzi L, Tardani F, La Mesa C et al (2016a) Interactions and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines. Nanotechnology 15:155704

    Google Scholar 

  • Muzi L, Mouchet F, Cadarsi S et al (2016b) Examining the impact of multi-layer graphene using cellular and amphibian models. 2D Mater 3:1–10

    Google Scholar 

  • Muzzalupo R, Gente G, La Mesa C et al (2006) Micelles in mixtures of sodium dodecyl sulfate and a bolaform surfactant. Langmuir 22:6001–6009

    CAS  PubMed  Google Scholar 

  • Muzzalupo R, Nicoletta FP, Trombino S et al (2007) A new crown ether as vesicular carrier for 5-fluorouracil: synthesis, characterization and drug delivery evaluation. Colloids Surf B Biointerfaces 58:197–202

    CAS  PubMed  Google Scholar 

  • Muzzalupo R, Pérez L, Pinazo A et al (2017) Pharmaceutical versatility of cationic noises derived from amino acid-based surfactants: skin penetration behavior and controlled drug release. Int J Pharm 29:245–252

    Google Scholar 

  • Nagarajan R (2002) Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir 18:31–38

    CAS  Google Scholar 

  • Nakamura F, Isobe H (2003) Functionalized fullerenes in water. The First 10 Years of their chemistry, biology, and nanoscience. Acc Chem Res 36:807–815

    CAS  PubMed  Google Scholar 

  • Novoselov KS, Fal’ko VI, Colombo L et al (2012) A roadmap for graphene. Nature 490:192–200

    CAS  PubMed  Google Scholar 

  • Olusanya TOB, Haj Ahmad RR, Ibegbu DM et al (2018) Liposomal drug delivery systems and anticancer drugs. Molecules 23:907–911

    PubMed Central  Google Scholar 

  • Patri AK, Kukowska-Latallo JF, Baker JR Jr (2005) Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 57:2203–2214

    CAS  PubMed  Google Scholar 

  • Piccioni F, Borioni A, Delfini M, Del Giudice MR et al (2007) Metabolic alterations in cultured mouse fibroblasts induced by an inhibitor of the tyrosine kinase receptors fibroblast growth factor receptor 1. Anal Biochem 367(1):111–121

    CAS  PubMed  Google Scholar 

  • Pinazo A, Lozano N, Perez L et al (2011) Arginine diacyl-glycerolipid conjugates as multifunctional biocompatible surfactants. Compt Rend Chim 14:726–735

    CAS  Google Scholar 

  • Popov AM, Lozovik YE, Fiorito S et al (2007) Biocompatibility and applications of carbon nanotubes in medical nanorobots. Int J Nanomed 2:361–372

    CAS  Google Scholar 

  • Porter WL (1993) Paradoxical behavior of antioxidants in food and biological systems. Toxicol Ind Health 9:93–122

    CAS  PubMed  Google Scholar 

  • Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68

    CAS  PubMed  Google Scholar 

  • Pretti C, Oliva M, Di Pietro R et al (2014) Ecotoxicity of pristine graphene to marine organisms. Ecotoxicol Environ Saf 101:138–145

    CAS  PubMed  Google Scholar 

  • Pucci C, Barbetta A, Sciscione F et al (2014a) Ion distribution around synthetic vesicles of the cat-anionic Type. J Phys Chem B 118:557–566

    CAS  PubMed  Google Scholar 

  • Pucci C, Pérez L, La Mesa C et al (2014b) Characterization and stability of catanionic vesicles formed by pseudo-tetraalkyl surfactant mixtures. Soft Matter 10:9657–9667

    CAS  PubMed  Google Scholar 

  • Pucci C, Scipioni A, La Mesa C (2014c) Albumin binding onto synthetic vesicles. Soft Matter 10:9669–9675

    Google Scholar 

  • Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60

    Google Scholar 

  • Risuleo G, La Mesa C (2016) Dispersibility of carbon nanotubes in biopolymer-based fluids and their potential biotechnological applications. Trends Nanotechnol Mater Sci 1:1–7

    Google Scholar 

  • Russo L, Berardi V, Tardani F, Risuleo G (2013) Delivery of RNA and its intracellular translation into protein mediated by SDS-CTAB vesicles: potential use in nanobiotechnology. Biomed Res Int 734596:1–6

    Google Scholar 

  • Safran SA, Pincus P, Andelman D (1990) Theory of spontaneous vesicle formation in surfactant mixtures. Science 248:354–356

    CAS  PubMed  Google Scholar 

  • Sallustio S, Galantini L, Gente G et al (2004) Hydrophobically modified pullulans: characterization and physicochemical properties. J Phys Chem B 108:18876–18883

    CAS  Google Scholar 

  • Shtansky DV, Firestein KL, Golberg DV (2018) Fabrication and application of BN nanoparticles, nanosheets and their nanohybrids. Nanoscale 10:17477–17493

    CAS  PubMed  Google Scholar 

  • Simberg D, Weisman S, Talmon Y et al (2004) DOTAP (and other cationic lipids): chemistry, biophysics, and transfection. Crit Rev Ther Drug Carrier Syst 21:257–319

    CAS  PubMed  Google Scholar 

  • Spitalsky Z, Tasis D, Papagelis K et al (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    CAS  Google Scholar 

  • Stefanutti E, Papacci F, Sennato S et al (2014) Cationic liposomes formulated with DMPC and a gemini surfactant traverse the cell membrane without causing a significant bio-damage. Biochim Biophys Acta 1838:2646–2655

    CAS  PubMed  Google Scholar 

  • Tanford C (1980) The hydrophobic effect; formation of micelles, vesicles and biological membranes. Wiley-Interscience, New York

    Google Scholar 

  • Tardani F, Sennato S (2014) Phase behavior of DNA-stabilized carbon nanotubes dispersions: association with oppositely-charged additives. J Phys Chem 118:9268–9274

    CAS  Google Scholar 

  • Tardani F, La Mesa C, Poulin P et al (2012) Phase behavior of DNA-based dispersions containing carbon nanotubes: effects of added polymers and ionic strength on excluded volume. J Phys Chem C 2012(116):9888–9894

    Google Scholar 

  • Tardani F, Strobbia P, Scipioni A (2013) Encapsulating carbon nanotubes in aqueous ds-DNA anisotropic phases: shear orientation and rheological properties. RSC Adv 3:25917–25923

    CAS  Google Scholar 

  • Tavano L, Mazzotta E, Muzzalupo R (2017) Nanovesicular formulations for cancer gene therapy. Curr Pharm Des 23:5327–5335

    CAS  PubMed  Google Scholar 

  • Tsang SC, Harris PJF, Green MLH (1993) Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature 362:520–522

    CAS  Google Scholar 

  • Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–130:37–46

    PubMed  Google Scholar 

  • Venkatesan J, Pallela R, Kim SK (2014) Applications of carbon nanomaterials in bone tissue engineering. J Biomed Nanotechnol 10:3105–3123

    CAS  PubMed  Google Scholar 

  • Vintiloiu A, Leroux J-CJ (2008) Organogels and their use in drug delivery—a review. J Control Release 125:179–192

    CAS  PubMed  Google Scholar 

  • Vlachy N, Touraud D, Heilmann J et al (2009) Determining the cytotoxicity of catanionic surfactant mixtures on HeLa cells. Colloids Surf B Biointerfaces 70:278–280

    CAS  PubMed  Google Scholar 

  • Wang H (2009) Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interface Sci 14:364–371

    CAS  Google Scholar 

  • Weinstein JN, Leserman LD (1984) Liposomes as drug carriers in cancer chemotherapy. Pharmacol Ther 24:207–233

    CAS  PubMed  Google Scholar 

  • Wright PK (2008) Targeting vesicle trafficking: an important approach to cancer chemotherapy. Recent Pat Anticancer Drug Discov 3(2):137–147

    CAS  PubMed  Google Scholar 

  • Zanni E, De Bellis G, Bracciale MP et al (2012) Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model. Nano Lett 12:2740–2744

    CAS  PubMed  Google Scholar 

  • Zhao J, Wang Z, White JC, Xing B (2014) Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ Sci Technol 48:9995–10009

    CAS  PubMed  Google Scholar 

  • Zoeller N, Blankschtein D (1998) Experimental determination of micelle shape and size in aqueous solutions of dodecyl ethoxy sulfates. Langmuir 14:7155–7165

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Risuleo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Risuleo, G., La Mesa, C. (2019). Nanoparticles and Molecular Delivery System for Nutraceuticals Bioavailability. In: Gupta, R., Srivastava, A., Lall, R. (eds) Nutraceuticals in Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-04624-8_53

Download citation

Publish with us

Policies and ethics