Skip to main content

Defend the Clique-based Attack for Data Privacy

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11346))

Abstract

Clique, as the most compact cohesive component in a graph, has been employed to identify cohesive subgroups of entities and explore the sensitive information in the online social network, crowdsourcing network, and cyber physical network, etc. In this study, we focus on the defense of clique-based attack and target at reducing the risk of entities security/privacy issues in clique structure. Since the ultimate resolution for defending the clique-based attack and risk is wrecking the clique with minimum cost, we establish the problem of clique-destroying (CD) in the network from a fundamental algorithm aspect. Interestingly, we notice that the clique-destroying problem in the directed graph is still an unsolved problem, and complexity analysis also does not exist. Therefore, we propose an innovative formal clique-destroying problem and proof the NP-complete problem complexity with solid theoretical analysis, then present effective and efficient algorithms for both undirected and directed graph. Furthermore, we show how to extend our algorithm to data privacy protection applications with controllable parameter k, which could adjust the size of a clique we wish to destroy. By comparing our algorithm with the up-to-date anonymization approaches, the real data experiment demonstrates that our resolution could efficaciously defend the clique-based security and privacy attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.facebook.com/.

  2. 2.

    https://www.linkedin.com/.

  3. 3.

    https://twitter.com/.

  4. 4.

    https://www.instagram.com.

  5. 5.

    https://www.amazon.com/.

  6. 6.

    https://www.ferc.gov/.

  7. 7.

    https://www.facebook.com/apps/application.php?id=201704403232744.

  8. 8.

    http://www.epinions.com/.

  9. 9.

    https://www.wikipedia.org/.

  10. 10.

    http://cap.ece.gatech.edu/.

References

  1. Zhang, J., Li, Q., Schooler, E.M.: iHEMS: an information-centric approach to secure home energy management. In: 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), pp. 217–222. IEEE (2012)

    Google Scholar 

  2. Aberer, K., Alonso, G., Kossmann, D.: Data management for a smart earth: the swiss NCCR-MICS initiative. ACM SIGMOD Rec. 35(4), 40–45 (2006)

    Article  Google Scholar 

  3. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2014)

    Article  Google Scholar 

  4. Liang, Y., Cai, Z., Han, Q., Li, Y.: Location privacy leakage through sensory data. Secur. Commun. Netw. 2017, 1–12 (2017)

    Article  Google Scholar 

  5. Zheng, X., Cai, Z., Li, J., Gao, H.: Location-privacy-aware review publication mechanism for local business service systems. In: INFOCOM 2017-IEEE Conference on Computer Communications, pp. 1–9. IEEE (2017)

    Google Scholar 

  6. He, Z., Cai, Z., Yu, J., Wang, X., Sun, Y., Li, Y.: Cost-efficient strategies for restraining rumor spreading in mobile social networks. IEEE Trans. Veh. Technol. 66(3), 2789–2800 (2017)

    Article  Google Scholar 

  7. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: 2009 30th IEEE Symposium on Security and Privacy, pp. 173–187. IEEE (2009)

    Google Scholar 

  8. Potharaju, R., Carbunar, B., Nita-Rotaru, C.: iFriendU: leveraging 3-cliques to enhance infiltration attacks in online social networks. In: Proceedings of the 17th ACM Conference on Computer and Communications Security. ACM (2010) 723–725

    Google Scholar 

  9. Gulyás, G.G., Simon, B., Imre, S.: An efficient and robust social network de-anonymization attack. In: Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society, pp. 1–11. ACM (2016)

    Google Scholar 

  10. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  11. Niu, B., Li, Q., Zhu, X., Cao, G., Li, H.: Achieving k-anonymity in privacy-aware location-based services. In: 2014 Proceedings IEEE INFOCOM, pp. 754–762. IEEE (2014)

    Google Scholar 

  12. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321. ACM (2015)

    Google Scholar 

  13. Dalenius, T.: Towards a methodology for statistical disclosure control. Statistik Tidskrift 15, 429–444 (1977)

    Google Scholar 

  14. Dwork, C., Naor, M.: On the difficulties of disclosure prevention in statistical databases or the case for differential privacy. J. Priv. Confid. 2(1), 8 (2008)

    Google Scholar 

  15. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)

    Article  MathSciNet  Google Scholar 

  16. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)

    Article  MathSciNet  Google Scholar 

  17. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends® Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Acquisti, A., Brandimarte, L., Loewenstein, G.: Privacy and human behavior in the age of information. Science 347(6221), 509–514 (2015)

    Article  Google Scholar 

  19. Young, A.L., Quan-Haase, A.: Privacy protection strategies on facebook: the internet privacy paradox revisited. Inf. Commun. Soc. 16(4), 479–500 (2013)

    Article  Google Scholar 

  20. Bettini, C., Riboni, D.: Privacy protection in pervasive systems: state of the art and technical challenges. Pervasive Mob. Comput. 17, 159–174 (2015)

    Article  Google Scholar 

  21. Zhao, J., Liu, J., Qin, Z., Ren, K.: Privacy protection scheme based on remote anonymous attestation for trusted smart meters. IEEE Trans. Smart Grid 9, 3313–3320 (2016)

    Article  Google Scholar 

  22. Naor, M., Nissim, K.: Communication preserving protocols for secure function evaluation. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 590–599. ACM (2001)

    Google Scholar 

  23. Goldwasser, S.: Multi party computations: past and present. In: Proceedings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 1–6. ACM (1997)

    Google Scholar 

  24. Han, M., Li, J., Cai, Z., Han, Q.: Privacy reserved influence maximization in GPS-enabled cyber-physical and online social networks. In: 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-SustainCom), pp. 284–292. IEEE (2016)

    Google Scholar 

  25. Albinali, H., Han, M., Wang, J., Gao, H., Li, Y.: The roles of social network mavens. In: 2016 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), pp. 1–8. IEEE (2016)

    Google Scholar 

  26. Cai, Z., Zheng, X.: A private and efficient mechanism for data uploading in smart cyber-physical systems. IEEE Trans. Netw. Sci. Eng. (2018)

    Google Scholar 

  27. Zheng, X., Luo, G., Cai, Z.: A fair mechanism for private data publication in online social networks. IEEE Trans. Netw. Sci. Eng. (2018)

    Google Scholar 

  28. Li, J., Cai, Z., Wang, J., Han, M., Li, Y.: Truthful incentive mechanisms for geographical position conflicting mobile crowdsensing systems. IEEE Trans. Comput. Soc. Syst. 5(2), 324–334 (2018)

    Article  Google Scholar 

  29. Han, M., Wang, J., Yan, M., Ai, C., Duan, Z., Hong, Z.: Near-complete privacy protection: cognitive optimal strategy in location-based services. Procedia Comput. Sci. 129, 298–304 (2018)

    Article  Google Scholar 

  30. Ling, X., Wu, C., Ji, S., Han, M.: H\(_{2}\)DoS: an application-layer DoS attack towards HTTP/2 protocol. In: Lin, X., Ghorbani, A., Ren, K., Zhu, S., Zhang, A. (eds.) SecureComm 2017. LNICST, vol. 238, pp. 550–570. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78813-5_28

    Chapter  Google Scholar 

  31. Han, M., Li, L., Peng, X., Hong, Z., Li, M.: Information privacy of cyber transportation system: opportunities and challenges. In: Proceedings of the 6th Annual Conference on Research in Information Technology, pp. 23-28. ACM (2017). https://dl.acm.org/citation.cfm?id=31256

  32. Zheng, X., Cai, Z., Yu, J., Wang, C., Li, Y.: Follow but no track: privacy preserved profile publishing in cyber-physical social systems. IEEE Internet Things J. 4(6), 1868–1878 (2017)

    Article  Google Scholar 

  33. Zhou, Y., Han, M., Liu, L., He, J.S., Wang, Y.: Deep learning approach for cyberattack detection. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 262–267. IEEE (2018)

    Google Scholar 

  34. Han, M., Duan, Z., Li, Y.: Privacy issues for transportation cyber physical systems. In: Sun, Y., Song, H. (eds.) Secure and Trustworthy Transportation Cyber-Physical Systems. SCS, pp. 67–86. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-3892-1_4

    Chapter  Google Scholar 

  35. Joshi, A.P., Han, M., Wang, Y.: A survey on security and privacy issues of blockchain technology. Math. Found. Comput. 1(2), 121–147 (2018)

    Article  Google Scholar 

  36. Liu, L., Han, M., Wang, Y., Zhou, Y.: Understanding data breach: a visualization aspect. In: Chellappan, S., Cheng, W., Li, W. (eds.) WASA 2018. LNCS, vol. 10874, pp. 883–892. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94268-1_81

    Chapter  Google Scholar 

  37. Liang, Y., Cai, Z., Yu, J., Han, Q., Li, Y.: Deep learning based inference of private information using embedded sensors in smart devices. IEEE Netw. 32(4), 8–14 (2018)

    Article  Google Scholar 

  38. Wang, J., Cai, Z., Li, Y., Yang, D., Li, J., Gao, H.: Protecting query privacy with differentially private k-anonymity in location-based services. Pers. Ubiquit. Comput. 22, 1–17 (2018)

    Article  Google Scholar 

  39. Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1), 86–95 (2011)

    Article  Google Scholar 

  40. Dwork, C., Rothblum, G.N., Vadhan, S.: Boosting and differential privacy. In: 2010 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 51–60. IEEE (2010)

    Google Scholar 

  41. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression. In: Advances in Neural Information Processing Systems pp. 289–296 (2009)

    Google Scholar 

  42. Chaudhuri, K., Sarwate, A., Sinha, K.: Near-optimal differentially private principal components. In: Advances in Neural Information Processing Systems, pp. 989–997 (2012)

    Google Scholar 

  43. Sarwate, A.D., Chaudhuri, K.: Signal processing and machine learning with differential privacy: algorithms and challenges for continuous data. IEEE Sig. Process. Mag. 30(5), 86–94 (2013)

    Article  Google Scholar 

  44. Ho, S.S., Ruan, S.: Differential privacy for location pattern mining. In: Proceedings of the 4th ACM SIGSPATIAL International Workshop on Security and Privacy in GIS and LBS, pp. 17–24. ACM (2011)

    Google Scholar 

  45. Dewri, R.: Local differential perturbations: location privacy under approximate knowledge attackers. IEEE Trans. Mob. Comput. 12(12), 2360–2372 (2013)

    Article  Google Scholar 

  46. Xiao, Y., Xiong, L.: Protecting locations with differential privacy under temporal correlations. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1298–1309. ACM (2015)

    Google Scholar 

  47. Yildiz, H., Kruegel, C.: Detecting social cliques for automated privacy control in online social networks. In: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 353–359. IEEE (2012)

    Google Scholar 

  48. Pan, X., Xu, J., Meng, X.: Protecting location privacy against location-dependent attacks in mobile services. IEEE Trans. Knowl. Data Eng. 24(8), 1506–1519 (2012)

    Article  Google Scholar 

  49. Narayanan, A., Shi, E., Rubinstein, B.I.: Link prediction by de-anonymization: How we won the Kaggle social network challenge. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 1825–1834. IEEE (2011)

    Google Scholar 

  50. Srivatsa, M., Hicks, M.: Deanonymizing mobility traces: using social network as a side-channel. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 628–637. ACM (2012)

    Google Scholar 

  51. Ji, S., Li, W., Srivatsa, M., He, J.S., Beyah, R.: Structure based data de-anonymization of social networks and mobility traces. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 237–254. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13257-0_14

    Chapter  Google Scholar 

  52. Gulyás, G.G., Imre, S.: Analysis of identity separation against a passive clique-based de-anonymization attack. Infocommunications J. 4(3), 11–20 (2011)

    Google Scholar 

  53. Niedermeier, R.: Invitation to Fixed-parameter Algorithms (2006)

    Chapter  Google Scholar 

  54. Brügmann, D., Komusiewicz, C., Moser, H.: On generating triangle-free graphs. Electron. Notes Discret. Math. 32, 51–58 (2009)

    Article  MathSciNet  Google Scholar 

  55. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Heidelberg (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  56. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)

    Article  Google Scholar 

  57. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)

    Article  MathSciNet  Google Scholar 

  58. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In: Advances in Neural Information Processing Systems, pp. 539–547 (2012)

    Google Scholar 

  59. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39718-2_23

    Chapter  Google Scholar 

  60. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, pp. 641–650. ACM (2010)

    Google Scholar 

  61. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1361–1370. ACM (2010)

    Google Scholar 

  62. Ji, S., Li, W., Mittal, P., Hu, X., Beyah, R.A.: SecGraph: a uniform and open-source evaluation system for graph data anonymization and de-anonymization. In: USENIX Security Symposium, pp. 303–318 (2015)

    Google Scholar 

  63. Ying, X., Wu, X.: Randomizing social networks: a spectrum preserving approach. In: Proceedings of the 2008 SIAM International Conference on Data Mining, pp. 739–750. SIAM (2008)

    Google Scholar 

  64. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 93–106. ACM (2008)

    Google Scholar 

  65. Sala, A., Zhao, X., Wilson, C., Zheng, H., Zhao, B.Y.: Sharing graphs using differentially private graph models. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, pp. 81–98. ACM (2011)

    Google Scholar 

  66. Yartseva, L., Grossglauser, M.: On the performance of percolation graph matching. In: Proceedings of the First ACM Conference on Online Social Networks, pp. 119–130. ACM (2013)

    Google Scholar 

Download references

Acknowledgement

This work is partly supported by the Foundation of Guizhou Provincial Key Laboratory of Public Big Data (No. 2018BDKFJJ002) and the National Science Foundation (NSF) under grant NOs. 1252292, 1741277, 1704287, and 1829674.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, M., Miao, D., Wang, J., Liu, L. (2018). Defend the Clique-based Attack for Data Privacy. In: Kim, D., Uma, R., Zelikovsky, A. (eds) Combinatorial Optimization and Applications. COCOA 2018. Lecture Notes in Computer Science(), vol 11346. Springer, Cham. https://doi.org/10.1007/978-3-030-04651-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04651-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04650-7

  • Online ISBN: 978-3-030-04651-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics