Skip to main content

3D Printing Technology of Polymer Composites and Hydrogels for Artificial Skin Tissue Implementations

  • Chapter
  • First Online:
Polymer Nanocomposites in Biomedical Engineering

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

Today, the need for tissue and organ transplant has occupied the centre stage in the field of biomedical engineering. The requirement and the replacement ratio increase drastically where the supply was not met by the demand due to the lack of donors, poor biocompatibility of tissues from donors that boycotts the transplant itself. On the other hand, from the advancement in technology, it is possible to replace natural tissues with some polymeric hydrogels whose mechanical behaviour and biocompatibility resembles the natural tissues. Additionally, hydrogels are one of the effective materials that offer an aqua environment with enriched oxygen and nutrition content that a biological cell needs. Further, three-dimensional (3D) printing, a manufacturing technique where the biomedical organs are fussed with materials such as plastic, ceramics, liquids, powder, living cell etc. in such a way that it provides a 3D object in the micron-scale resolution. Therefore, the combination of polymer composites, hydrogels and 3D printing has its application in skin bioprinting and tissue engineering. Thus, it contributes in acquiring a new, efficient, cost-effective and enhanced biocompatible biological organ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D printing:

Three-dimensional printing

AM:

Additive manufacturing

APS:

Ammonium persulfate

CA:

Cellulose acetate

Ca2+:

Calcium

CAD:

Computer-aided design

CMC:

Carboxymethylcellulose

dECM:

Decellularized extracellular matrix

ECHs:

Electro-conductive hydrogels

ECM:

Extracellular matrix

FDM:

Fused deposition modelling FDM

GelMA:

Gelatin methacrylate

GO:

Graphene oxide

HA:

Hydroxyapatite

KPS:

Potassium persulfate

LAB:

Laser-assisted bioprinting

MgO:

Magnesia

MWCNTs:

Multiwall carbon nanotubes

PAN:

Polyacrylonitrile

PANI:

Polyaniline

PCL:

Polycaprolactone

PE:

Polyethylene

PEG:

Poly ethylene glycol

PEGDA:

Poly ethylene glycol diacrylate

PES:

Polyethersulfone

PGA:

Poly glycolic acid

PLA:

Polylactic acid

PLGA:

Poly lactic-co-glycolic acid

PNIPAAm:

Poly N-isopropyl acrylamide

PPy:

Polypyrrole

PSF:

Polysulfone

PTFE:

Poly (tetrafluoroethylene)

PU:

Poly urethane

PVA:

Poly vinyl alcohol

PVC:

Poly vinyl chloride

PVDF:

Polyvinylidene fluoride

PVME:

Poly (viny1 methyl ether)

RP:

Rapid prototyping

SFF:

Solid-free form technology

STL:

Stereolithography

SWCNTs:

Single-wall carbon nanotubes

References

  • Aboutalebi Anaraki N, Roshanfekr Rad L, Irani M, Haririan I (2015) Fabrication of PLA/PEG/MWCNT electrospun nanofibrous scaffolds for anticancer drug delivery. J Appl Polym Sci 132(3):41286

    Google Scholar 

  • Almeida CR, Serra T, Oliveira MI, Planell JA, Barbosa MA, Navarro M (2014) Impact of 3-D printed PLA-and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater 10(2):613–622

    Google Scholar 

  • Aoki H, Al-Assaf S, Katayama T, Phillips GO (2007) Characterization and properties of Acacia senegal (L.) Willd. var. senegal with enhanced properties (Acacia (sen) SUPER GUMâ„¢). Food Hydrocolloids 21:329–337

    Google Scholar 

  • Arslan-Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U (2016) Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8(1):014103

    Google Scholar 

  • Barron JA, Ringeisen BR, Kim H, Spargo BJ, Chrisey DB (2004) Application of laser printing to mammalian cells. Thin Solid Films 453:383–387

    Google Scholar 

  • Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P (2014) The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35(1):49–62

    Google Scholar 

  • Chang CC, Boland ED, Williams SK, Hoying JB (2011) Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater 98(1):160–170

    Google Scholar 

  • Cheng C, Sun S, Zhao C (2014) Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes. J Mater Chem B 2(44):7649–7672

    Google Scholar 

  • Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang Y (2015) Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng 112(5):1047–1055

    Google Scholar 

  • Chung HJ, Park TG (2009) Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 4(5):429–437

    Google Scholar 

  • Colina M, Serra P, Fernández-Pradas JM, Sevilla L, Morenza JL (2005) DNA deposition through laser induced forward transfer. Biosens Bioelectron 20(8):1638–1642

    Google Scholar 

  • Cui X, Boland T, DD’Lima D, Lotz MK (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6(2):149–155

    Google Scholar 

  • Dababneh AB, Ozbolat IT (2014) Bioprinting technology: a current state-of-the-art review. J Manuf Sci Eng 136(6):061016

    Google Scholar 

  • de Nooy AE, Masci G, Crescenzi V (1999) Versatile synthesis of polysaccharide hydrogels using the Passerini and Ugi multicomponent condensations. Macromolecules 32(4):1318–1320

    Google Scholar 

  • de Nooy AE, Capitani D, Masci G, Crescenzi V (2000) Ionic polysaccharide hydrogels via the Passerini and Ugi multicomponent condensations: synthesis, behavior and solid-state NMR characterization. Biomacromolecules 1(2):259–267

    Google Scholar 

  • Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338(6109):921–926

    Google Scholar 

  • Dinca V, Kasotakis E, Catherine J, Mourka A, Ranella A, Ovsianikov A, Chichkov BN, Farsari M, Mitraki A, Fotakis C (2008) Directed three-dimensional patterning of self-assembled peptide fibrils. Nano Lett 8(2):538–543

    Google Scholar 

  • Do AV, Khorsand B, Geary SM, Salem AK (2015) 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater 4(12):1742–1762

    Google Scholar 

  • Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    Google Scholar 

  • Duan B (2017) State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann Biomed Eng 45(1):195–209

    Google Scholar 

  • Ebara M, Kotsuchibashi Y, Narain R, Idota N, Kim YJ, Hoffman JM, Uto K, Aoyagi T (2014) Smart biomaterials. Springer, Berlin

    Google Scholar 

  • Fang Y, Frampton JP, Raghavan S, Sabahi-Kaviani R, Luker G, Deng CX, Takayama S (2012) Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng Part C Methods 18(9):647–657

    Google Scholar 

  • Gonçalves EM, Oliveira FJ, Silva RF, Neto MA, Fernandes MH, Amaral M, Vallet-Regí M, Vila M (2016) Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J Biomed Mater Res B Appl Biomater 104(6):1210–1219

    Google Scholar 

  • Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86(7):3240–3253

    Google Scholar 

  • Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim CH (2016) 3-dimensional bioprinting for tissue engineering applications. Biomater Res 20(12):1–8

    Google Scholar 

  • Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29(4):183–190

    Google Scholar 

  • Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Remy M, Bordenave L, Amedee J, Guillemot F (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28):7250–7256

    Google Scholar 

  • Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236

    Google Scholar 

  • Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Google Scholar 

  • Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12(12):2156–2164

    Google Scholar 

  • Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J, Yannas I, Kaplan D, Vunjak-Novakovic G (2006) Tissue engineering and developmental biology: going biomimetic. Tissue Eng 12(12):3265–3283

    Google Scholar 

  • Intra J, Glasgow JM, Mai HQ, Salem AK (2008) Pulsatile release of biomolecules from polydimethylsiloxane (PDMS) chips with hydrolytically degradable seals. J Controlled Release 127(3):280–287

    Google Scholar 

  • Iwami K, Noda T, Ishida K, Morishima K, Nakamura M, Umeda N (2010) Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel. Biofabrication 2(1):014108

    Google Scholar 

  • Jang J, Park JY, Gao G, Cho DW (2018) Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials 156:88–106

    Google Scholar 

  • Jayaramudu T, Li Y, Ko HU, Shishir IR, Kim J (2016a) Poly (acrylic acid)-Poly (vinyl alcohol) hydrogels for reconfigurable lens actuators. Int J Precis Eng Manuf Green Technol 3(4):375–379

    Google Scholar 

  • Jayaramudu T, Raghavendra GM, Varaprasad K, Raju KM, Sadiku ER, Kim J (2016b) 5-Fluorouracil encapsulated magnetic nanohydrogels for drug-delivery applications. J Appl Polym Sci 133:37

    Google Scholar 

  • Jeong KH, Park D, Lee YC (2017) Polymer-based hydrogel scaffolds for skin tissue engineering applications: a mini-review. J Polym Res 24(7):112

    Google Scholar 

  • Jones N (2012) Science in three dimensions: the print revolution. Nature 487:22–23

    Google Scholar 

  • Jones R, Haufe P, Sells E, Iravani P, Olliver V, Palmer C, Bowyer A (2011) RepRap–the replicating rapid prototyper. Robotica 29(1):177–191

    Google Scholar 

  • Kaith BS, Sharma R, Kalia S (2015) Guar gum based biodegradable, antibacterial and electrically conductive hydrogels. Int J Bio Macromol 75:266–275

    Google Scholar 

  • Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312

    Google Scholar 

  • Kasza KE, Rowat AC, Liu J, Angelini TE, Brangwynne CP, Koenderink GH, Weitz DA (2007) The cell as a material. Curr Opin Cell Biol 19(1):101–107

    Google Scholar 

  • Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P (2015) Electrically conductive polymers and composites for biomedical applications. RSC Adv 5(47):37553–37567

    Google Scholar 

  • Kelm JM, Lorber V, Snedeker JG, Schmidt D, Broggini-Tenzer A, Weisstanner M, Odermatt B, Mol A, Zünd G, Hoerstrup SP (2010) A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. J Biotechnol 148(1):46–55

    Google Scholar 

  • Kim YB, Kim GH (2015) PCL/alginate composite scaffolds for hard tissue engineering: fabrication, characterization, and cellular activities. ACS Comb Sci 17(2):87–99

    Google Scholar 

  • Kishi R, Ichijo H, Hirasa O (1993) Thermo-responsive devices using poly (vinyl methyl ether) hydrogels. J Intell Mater Syst Struct 4(4):533–537

    Google Scholar 

  • Lee JS, Kim BS, Seo D, Park JH, Cho DW (2017) Three-dimensional cell printing of large-volume tissues: application to ear regeneration. Tissue Eng Part C Methods 23(3):136–145

    Google Scholar 

  • Lu T, Li Y, Chen T (2013) Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomed 8:337

    Google Scholar 

  • Lu Y, He W, Cao T, Guo H, Zhang Y, Li Q, Shao Z, Cui Y, Zhang X (2014) Elastic, conductive, polymeric hydrogels and sponges. Sci Rep 4:5792

    Google Scholar 

  • Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJ, Groll J, Hutmacher DW (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028

    Google Scholar 

  • Meng J, Xiao B, Zhang Y, Liu J, Xue H, Lei J, Kong H, Huang Y, Jin Z, Gu N, Xu H (2013) Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci Rep 3:2655

    Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Google Scholar 

  • Ng WL, Wang S, Yeong WY, Naing MW (2016) Skin bioprinting: impending reality or fantasy. Trends Biotechnol 34:689–699

    Google Scholar 

  • Noshadi I, Walker BW, Portillo-Lara R, Sani ES, Gomes N, Aziziyan MR, Annabi N (2017) Engineering biodegradable and biocompatible bio-ionic liquid conjugated hydrogels with tunable conductivity and mechanical properties. Sci Rep 7(1):4345

    Google Scholar 

  • Okamoto T, Suzuki T, Yamamoto N (2000) Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol 18(4):438–441

    Google Scholar 

  • Ozbolat IT (2015) Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol 33(7):395–400

    Google Scholar 

  • Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343

    Google Scholar 

  • Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60(3):691–699

    Google Scholar 

  • Park JY, Shim JH, Choi SA, Jang J, Kim M, Lee SH, Cho DW (2015) 3D printing technology to control BMP-2 and VEGF delivery spatially and temporally to promote large-volume bone regeneration. J Mater Chem B 3(27):5415–5425

    Google Scholar 

  • Park SH, Jung CS, Min BH (2016) Advances in three-dimensional bioprinting for hard tissue engineering. Tissue Eng Regen Med 13(6):622–635

    Google Scholar 

  • Pati F, Jang J, Ha DH, Kim SW, Rhie JW, Shim JH, Kim DH, Cho DW (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935

    Google Scholar 

  • Pati F, Gantelius J, Svahn HA (2016) 3D bioprinting of tissue/organ models. Angew Chem Int Ed 55(15):4650–4665

    Google Scholar 

  • Peltola SM, Melchels FP, Grijpma DW, Kellomaki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40(4):268–280

    Google Scholar 

  • Poh PS, Hutmacher DW, Holzapfel BM, Solanki AK, Stevens MM, Woodruff MA (2016) In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Acta Biomater 30:319–333

    Google Scholar 

  • Radenkovic D, Solouk A, Seifalian A (2016) Personalized development of human organs using 3D printing technology. Med Hypotheses 87:30–33

    Google Scholar 

  • Reed EJ, Klumb L, Koobatian M, Viney C (2009) Biomimicry as a route to new materials: what kinds of lessons are useful? Phil Trans R Soc A 367:1571–1585

    Google Scholar 

  • Rengier F, Mehndiratta A, Von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J CARS 5(4):335–341

    Google Scholar 

  • Roh HS, Lee CM, Hwang YH, Kook MS, Yang SW, Lee D, Kim BH (2017) Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Mater Sci Eng 74:525–535

    Google Scholar 

  • Said HM, Alla SG, El-Naggar AW (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React Funct Polym 61(3):397–404

    Google Scholar 

  • Schubert C, Van Langeveld MC, Donoso LA (2014) Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol 98(2):159–161

    Google Scholar 

  • Shim JH, Jang KM, Hahn SK, Park JY, Jung H, Oh K, Park KM, Yeom J, Park SH, Kim SW, Wang JH (2016) Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication 8(1):014102

    Google Scholar 

  • Shin SR, Zihlmann C, Akbari M, Assawes P, Cheung L, Zhang K, Manoharan V, Zhang YS, Yüksekkaya M, Wan KT, Nikkhah M (2016) Reduced graphene oxide-gel MA hybrid hydrogels as scaffolds for cardiac tissue engineering. Small 12(27):3677–3689

    Google Scholar 

  • Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mat 21(32–33):3307–3329

    Google Scholar 

  • Sperinde JJ, Griffith LG (1997) Synthesis and characterization of enzymatically-cross-linked poly (ethylene glycol) hydrogels. Macromolecules 30(18):5255–5264

    Google Scholar 

  • Stanton MM, Samitier J, Sanchez S (2015) Bioprinting of 3D hydrogels. Lab Chip 15(15):3111–3115

    Google Scholar 

  • Suzuki M, Hirasa O (1993) An approach to artificial muscle using polymer gels formed by micro-phase separation. Springer, Berlin

    Google Scholar 

  • Tayalia P, Mooney DJ (2009) Controlled growth factor delivery for tissue engineering. Adv Mater 21(32–33):3269–3285

    Google Scholar 

  • Tsai KY, Lin HY, Chen YW, Lin CY, Hsu TT, Kao CT (2017) Laser sintered magnesium-calcium silicate/poly-ε-caprolactone scaffold for bone tissue engineering. Materials 10(1):65

    Google Scholar 

  • Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47(7):2217–2262

    Google Scholar 

  • Ullah F, Othman MB, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433

    Google Scholar 

  • Vandenhaute M, Snoeck D, Vanderleyden E, De Belie N, Van Vlierberghe S, Dubruel P (2017) Stability of Pluronic® F127 bismethacrylate hydrogels: reality or utopia? Polym Degrad Stab 146:201–211

    Google Scholar 

  • Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R (2017) A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C 79:958–971

    Google Scholar 

  • Ventola CL (2014) Medical applications for 3D printing: current and projected uses. Pharm Ther 39(10):704–711

    Google Scholar 

  • Visser J, Peters B, Burger TJ, Boomstra J, Dhert WJ, Melchels FP, Malda J (2013) Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 5(3):035007

    Google Scholar 

  • Wang K, Ho CC, Zhang C, Wang B (2017) A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications. Engineering 3(5):653–662

    Google Scholar 

  • WÅ‚odarczyk-Biegun MK, del Campo A (2017) 3D bioprinting of structural proteins. Biomaterials 134:180–201

    Google Scholar 

  • Wong HM, Chu PK, Leung FK, Cheung KM, Luk KD, Yeung KW (2014) Engineered polycaprolactone–magnesium hybrid biodegradable porous scaffold for bone tissue engineering. Prog Nat Sci Mater Int 24(5):561–567

    Google Scholar 

  • Wu Y, Chen YX, Yan J, Quinn D, Dong P, Sawyer SW, Soman P (2016) Fabrication of conductive gelatin methacrylate–polyaniline hydrogels. Acta Biomater 33:122–130

    Google Scholar 

  • Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26(1):93–99

    Google Scholar 

  • Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19):3580–3588

    Google Scholar 

  • Xu T, Kincaid H, Atala A, Yoo JJ (2008) High-throughput production of single-cell microparticles using an inkjet printing technology. J Manuf Sci Eng 130(2):021017

    Google Scholar 

  • Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A (2013) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34(1):130–139

    Google Scholar 

  • Yang C, Chen S, Wang J, Zhu T, Xu G, Chen Z, Ma X, Li W (2016) A facile electrospinning method to fabricate polylactide/graphene/MWCNTs nanofiber membrane for tissues scaffold. Appl Surf Sci 362:163–168

    Google Scholar 

  • Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271

    Google Scholar 

  • Zhang YS, Choi SW, Xia Y (2013) Inverse opal scaffolds for applications in regenerative medicine. Soft Matter 9(41):9747–9754

    Google Scholar 

  • Zhang J, Zhao S, Zhu M, Zhu Y, Zhang Y, Liu Z, Zhang C (2014) 3D-printed magnetic Fe 3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B 2(43):7583–7595

    Google Scholar 

  • Zhang YS, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht SM, Yang J, Jia W, Dell’Erba V, Assawes P, Shin SR, Dokmeci MR (2017) 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng 45(1):148–163

    Google Scholar 

  • Zhao QS, Ji QX, Xing K, Li XY, Liu CS, Chen XG (2009) Preparation and characteristics of novel porous hydrogel films based on chitosan and glycerophosphate. Carbohydr Polym 76(3):410–416

    Google Scholar 

  • Zhu Y, Mao Z, Gao C (2013) Aminolysis-based surface modification of polyesters for biomedical applications. RSC Adv 3(8):2509–2519

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Khadheer Pasha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joseph, J., Deshmukh, K., Tung, T., Chidambaram, K., Khadheer Pasha, S.K. (2019). 3D Printing Technology of Polymer Composites and Hydrogels for Artificial Skin Tissue Implementations. In: Sadasivuni, K., Ponnamma, D., Rajan, M., Ahmed, B., Al-Maadeed, M. (eds) Polymer Nanocomposites in Biomedical Engineering . Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-04741-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04741-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04740-5

  • Online ISBN: 978-3-030-04741-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics