Skip to main content

The Obesity Paradox and Cardiorespiratory Fitness

  • Chapter
  • First Online:
Cardiorespiratory Fitness in Cardiometabolic Diseases

Abstract

Obesity is associated with a number of risk factors for cardiovascular diseases (CVD), such as metabolic syndrome, hyperlipidemia (HLD), glucose intolerance, and hypertension (HTN). Several studies have, however, reported that a body mass index (BMI) representing overweight and obese individuals (BMI > 25.0 kg/m2) is more protective against mortality than BMI representing normal-weight individuals (BMI 18.5–24.9 kg/m2). This association has been termed as the BMI or obesity paradox (OP). In contrast to obesity, increased cardiorespiratory fitness (CRF) is associated with lower risk for CVD. In addition, some evidence suggests that CRF may modulate the BMI-CVD association. Specifically, the increased risk observed in individuals with normal BMI levels is greatly attenuated by increased CRF, suggesting that the increased risk may be the outcome of underlying muscle-wasting disease and not low body weight per say. In this review, we discuss the effects of the OP and CRF as it pertains to morbidity/mortality and CVD, as well as the role of physical activity and CRF in modifying morbidity/mortality and CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AF:

Atrial fibrillation

BMI:

Body mass index

CHD:

Coronary heart disease

CRF:

Cardiorespiratory fitness

CVD:

Cardiovascular diseases

DM2:

Diabetes mellitus

HF:

Heart failure

HLD:

Hyperlipidemia/dyslipidemia

HTN:

Hypertension

LDL-C:

Low-density lipoprotein cholesterol

METs:

Metabolic equivalent

MetS:

Metabolic syndrome

OP:

Obesity paradox

PA:

Physical activity

VO2:

Maximal oxygen uptake

WC:

Waist circumference

References

  1. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284–91.

    Article  CAS  PubMed  Google Scholar 

  2. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA. 2016;315(21):2292–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fryar CD, Carroll MD, Ogden CL. Prevalence of overweight, obesity, and extreme obesity among adults aged 20 and over: United States, 1960–1962 through 2013–2014 [Internet]. Atlanta: Centers for Disease Control; 2016. p. 6. (National Center for Health Statistics). Available from: https://www.cdc.gov/nchs/data/hestat/obesity_adult_13_14/obesity_adult_13_14.pdf.

  4. Fryar CD, Carroll MD, Ogden CL. Prevalence of overweight and obesity among children and adolescents aged 2–19 years: United States, 1963–1965 through 2013–2014 [Internet]. Atlanta: Centers for Disease Control; 2016. p. 6. (National Center for Health Statistics). Available from: https://www.cdc.gov/nchs/data/hestat/obesity_child_13_14/obesity_child_13_14.pdf.

  5. Lavie CJ, De Schutter A, Parto P, Jahangir E, Kokkinos P, Ortega FB, et al. Obesity and prevalence of cardiovascular diseases and prognosis—the obesity paradox updated. Prog Cardiovasc Dis. 2016;58(5):537–47.

    Article  PubMed  Google Scholar 

  6. Lavie CJ, Sharma A, Alpert MA, De Schutter A, Lopez-Jimenez F, Milani RV, et al. Update on obesity and obesity paradox in heart failure. Prog Cardiovasc Dis. 2016;58(4):393–400.

    Google Scholar 

  7. Oktay AA, Lavie CJ, Kokkinos PF, Parto P, Pandey A, Ventura HO. The interaction of cardiorespiratory fitness with obesity and the obesity paradox in cardiovascular disease. Prog Cardiovasc Dis. 2017;60(1):30–44.

    Article  PubMed  Google Scholar 

  8. Blair SN, Kohl HW, Paffenbarger RS, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA. 1989;262(17):2395–401.

    Article  CAS  PubMed  Google Scholar 

  9. Gulati M, Black HR, Shaw LJ, Arnsdorf MF, Merz CNB, Lauer MS, et al. The prognostic value of a nomogram for exercise capacity in women. N Engl J Med. 2005;353(5):468–75.

    Article  CAS  PubMed  Google Scholar 

  10. Kokkinos P, Myers J, Kokkinos JP, Pittaras A, Narayan P, Manolis A, et al. Exercise capacity and mortality in black and white men. Circulation. 2008;117(5):614–22.

    Article  PubMed  Google Scholar 

  11. Mora S, Redberg RF, Cui Y, Whiteman MK, Flaws JA, Sharrett AR, et al. Ability of exercise testing to predict cardiovascular and all-cause death in asymptomatic women: a 20-year follow-up of the lipid research clinics prevalence study. JAMA. 2003;290(12):1600–7.

    Article  CAS  PubMed  Google Scholar 

  12. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.

    Article  PubMed  Google Scholar 

  13. Physical fitness as a predictor of mortality among healthy, middle-aged Norwegian men. NEJM [Internet]. 2017 [cited 2017 Oct 30]. Available from: http://www.nejm.org.ezproxy.net.ucf.edu/doi/full/10.1056/NEJM199302253280803.

  14. Lee CD, Blair SN, Jackson AS. Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am J Clin Nutr. 1999;69(3):373–80.

    Article  CAS  PubMed  Google Scholar 

  15. Sui X, LaMonte MJ, Laditka JN, Hardin JW, Chase N, Hooker SP, et al. Cardiorespiratory fitness and adiposity as mortality predictors in older adults. JAMA. 2007;298(21):2507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aadahl M, Kjaer M, Jørgensen T. Associations between overall physical activity level and cardiovascular risk factors in an adult population. Eur J Epidemiol. 2007;22(6):369–78.

    Article  PubMed  Google Scholar 

  17. Kavanagh T, Mertens DJ, Hamm LF, Beyene J, Kennedy J, Corey P, et al. Peak oxygen intake and cardiac mortality in women referred for cardiac rehabilitation. J Am Coll Cardiol. 2003;42(12):2139–43.

    Article  PubMed  Google Scholar 

  18. Kachur S, Lavie CJ, de Schutter A, Milani RV, Ventura HO. Obesity and cardiovascular diseases. Minerva Med. 2017;108(3):212–28.

    PubMed  Google Scholar 

  19. Redinger RN. The pathophysiology of obesity and its clinical manifestations. Gastroenterol Hepatol. 2007;3(11):856–63.

    Google Scholar 

  20. Coppack SW. Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc. 2001;60(3):349–56.

    Article  CAS  PubMed  Google Scholar 

  21. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li P, Wang L, Liu C. Overweightness, obesity and arterial stiffness in healthy subjects: a systematic review and meta-analysis of literature studies. Postgrad Med. 2017;129(2):224–30.

    Article  PubMed  Google Scholar 

  23. Despres JP, Krauss RM. Obesity and lipoprotein metabolism. In: Handbook of obesity: etiology and pathophysiology. 2nd ed. New York: Marcel Dekker; 2004. p. 845–71.

    Google Scholar 

  24. Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116(16):1832–44.

    Article  CAS  PubMed  Google Scholar 

  25. Du Y, Li S, Cui C-J, Zhang Y, Yang S-H, Li J-J. Leptin decreases the expression of low-density lipoprotein receptor via PCSK9 pathway: linking dyslipidemia with obesity. J Transl Med [Internet]. 2016 [cited 2016 Dec 8];14(1). Available from: http://translational-medicine.biomedcentral.com/articles/10.1186/s12967-016-1032-4.

  26. Kulanuwat S, Tungtrongchitr R, Billington D, Davies IG. Prevalence of plasma small dense LDL is increased in obesity in a Thai population. Lipids Health Dis [Internet]. 2015 [cited 2016 Dec 21];14(1). Available from: http://lipidworld.biomedcentral.com/articles/10.1186/s12944-015-0034-1.

  27. Norris AL, Steinberger J, Steffen LM, Metzig AM, Schwarzenberg SJ, Kelly AS. Circulating oxidized LDL and inflammation in extreme pediatric obesity. Obesity. 2011;19(7):1415–9.

    Article  CAS  PubMed  Google Scholar 

  28. Holvoet P, Kritchevsky SB, Tracy RP, Mertens A, Rubin SM, Butler J, et al. The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort. Diabetes. 2004;53(4):1068–73.

    Article  CAS  PubMed  Google Scholar 

  29. Holvoet P, Mertens A, Verhamme P, Bogaerts K, Beyens G, Verhaeghe R, et al. Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2001;21(5):844–8.

    Article  CAS  PubMed  Google Scholar 

  30. Garrison RJ, Kannel WB, Stokes J, Castelli WP. Incidence and precursors of hypertension in young adults: the Framingham offspring study. Prev Med. 1987;16(2):235–51.

    Article  CAS  PubMed  Google Scholar 

  31. Bell BB, Rahmouni K. Leptin as a mediator of obesity-induced hypertension. Curr Obes Rep. 2016;5(4):397–404.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Taddei S, Virdis A, Mattei P, Favilla S, Salvetti A. Angiotensin II and sympathetic activity in sodium-restricted essential hypertension. Hypertension. 1995;25(4):595–601.

    Article  CAS  PubMed  Google Scholar 

  33. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116(6):991–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ho JE, Lyass A, Lee DS, Vasan RS, Kannel WB, Larson MG, et al. Predictors of new-onset heart failure clinical perspective: differences in preserved versus reduced ejection fraction. Circ Heart Fail. 2013;6(2):279–86.

    Article  PubMed  Google Scholar 

  35. Kenchaiah S, Evans JC, Levy D, Wilson PWF, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–13.

    Article  PubMed  Google Scholar 

  36. Alpert MA, Terry BE, Mulekar M, Cohen MV, Massey CV, Fan TM, et al. Cardiac morphology and left ventricular function in normotensive morbidly obese patients with and without congestive heart failure, and effect of weight loss. Am J Cardiol. 1997;80(6):736–40.

    Article  CAS  PubMed  Google Scholar 

  37. Bastien M, Poirier P, Lemieux I, Després J-P. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56(4):369–81.

    Article  PubMed  Google Scholar 

  38. Poirier P, Martin J, Marceau P, Biron S, Marceau S. Impact of bariatric surgery on cardiac structure, function and clinical manifestations in morbid obesity. Expert Rev Cardiovasc Ther. 2004;2(2):193–201.

    Article  PubMed  Google Scholar 

  39. Knuiman M, Briffa T, Divitini M, Chew D, Eikelboom J, McQuillan B, et al. A cohort study examination of established and emerging risk factors for atrial fibrillation: the Busselton Health Study. Eur J Epidemiol. 2014;29(3):181–90.

    Article  PubMed  Google Scholar 

  40. Bekwelem W, Misialek JR, Konety S, Solomon SD, Soliman EZ, Loehr LR, et al. Echocardiographic measures of cardiac structure and function are associated with risk of atrial fibrillation in blacks: the Atherosclerosis Risk in Communities (ARIC) study. PLoS One. 2014;9(10):e110111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sasson Z, Rasooly Y, Gupta R, Rasooly I. Left atrial enlargement in healthy obese: prevalence and relation to left ventricular mass and diastolic function. Can J Cardiol. 1996;12(3):257–63.

    CAS  PubMed  Google Scholar 

  42. Wang TJ. Obesity and the risk of new-onset atrial fibrillation. JAMA. 2004;292(20):2471.

    Article  CAS  PubMed  Google Scholar 

  43. Frost L, Hune LJ, Vestergaard P. Overweight and obesity as risk factors for atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Am J Med. 2005;118(5):489–95.

    Article  PubMed  Google Scholar 

  44. O’Neal WT, Soliman EZ, Qureshi W, Alonso A, Heckbert SR, Herrington D. Sustained pre-hypertensive blood pressure and incident atrial fibrillation: the multi-ethnic study of atherosclerosis. J Am Soc Hypertens JASH. 2015;9(3):191–6.

    Article  PubMed  Google Scholar 

  45. Abed HS, Wittert GA, Leong DP, Shirazi MG, Bahrami B, Middeldorp ME, et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. JAMA. 2013;310(19):2050–60.

    Article  CAS  PubMed  Google Scholar 

  46. Pathak RK, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, Wong CX, et al. Long-term effect of goal-directed weight management in an atrial fibrillation cohort: a Long-Term Follow-Up Study (LEGACY). J Am Coll Cardiol. 2015;65(20):2159–69.

    Article  PubMed  Google Scholar 

  47. Lavie CJ, Pandey A, Lau DH, Alpert MA, Sanders P. Obesity and atrial fibrillation prevalence, pathogenesis, and prognosis. J Am Coll Cardiol. 2017;70(16):2022–35.

    Article  PubMed  Google Scholar 

  48. Pocock SJ, McMurray JJV, Dobson J, Yusuf S, Granger CB, Michelson EL, et al. Weight loss and mortality risk in patients with chronic heart failure in the candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) programme. Eur Heart J. 2008;29(21):2641–50.

    Article  PubMed  Google Scholar 

  49. Zamora E, Díez-López C, Lupón J, de Antonio M, Domingo M, Santesmases J, et al. Weight loss in obese patients with heart failure. J Am Heart Assoc. 2016;5(3):e002468.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Uretsky S, Messerli FH, Bangalore S, Champion A, Cooper-Dehoff R, Zhou Q, et al. Obesity paradox in patients with hypertension and coronary artery disease. Am J Med. 2007;120(10):863–70.

    Article  PubMed  Google Scholar 

  51. Wang ZJ, Zhou YJ, Galper BZ, Gao F, Yeh RW, Mauri L. Association of body mass index with mortality and cardiovascular events for patients with coronary artery disease: a systematic review and meta-analysis. Heart. 2015;101(20):1631–8.

    Article  CAS  PubMed  Google Scholar 

  52. Khaled S, Matahen R. Obesity paradox in heart failure patients – female gender characteristics-KAMC-single center experience. Egypt Heart J. 2017;69(3):209–13.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lavie CJ, Alpert MA, Arena R, Mehra MR, Milani RV, Ventura HO. Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure. JACC Heart Fail. 2013;1(2):93–102.

    Article  PubMed  Google Scholar 

  54. Horwich TB, Fonarow GC, Hamilton MA, MacLellan WR, Woo MA, Tillisch JH. The relationship between obesity and mortality in patients with heart failure. J Am Coll Cardiol. 2001;38(3):789–95.

    Article  CAS  PubMed  Google Scholar 

  55. Oreopoulos A, Padwal R, Kalantar-Zadeh K, Fonarow GC, Norris CM, McAlister FA. Body mass index and mortality in heart failure: a meta-analysis. Am Heart J. 2008;156(1):13–22.

    Article  PubMed  Google Scholar 

  56. Kenchaiah S, Pocock SJ, Wang D, Finn PV, Zornoff LAM, Skali H, et al. Body mass index and prognosis in patients with chronic heart failure: insights from the candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) program. Circulation. 2007;116(6):627–36.

    Article  PubMed  Google Scholar 

  57. Sharma A, Lavie CJ, Borer JS, Vallakati A, Goel S, Lopez-Jimenez F, et al. Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am J Cardiol. 2015;115(10):1428–34.

    Article  PubMed  Google Scholar 

  58. Vest AR, Wu Y, Hachamovitch R, Young JB, Cho L. The heart failure overweight/obesity survival paradox: the missing sex link. JACC Heart Fail. 2015;3(11):917–26.

    Article  PubMed  Google Scholar 

  59. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation. 1998;98(10):946–52.

    Article  CAS  PubMed  Google Scholar 

  60. González-Cambeiro MC, Abu-Assi E, Raposeiras-Roubín S, Rodríguez-Mañero M, Otero-Raviña F, R González-Juanatey J, et al. Exploring the obesity paradox in atrial fibrillation. AFBAR (Atrial Fibrillation Barbanza Area) Registry Results. J Atr Fibrillation. 2014;6(5):991.

    PubMed  PubMed Central  Google Scholar 

  61. Stewart S, Hart CL, Hole DJ, McMurray JJV. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Am J Med. 2002;113(5):359–64.

    Article  PubMed  Google Scholar 

  62. Vidaillet H, Granada JF, Chyou PO, Maassen K, Ortiz M, Pulido JN, et al. A population-based study of mortality among patients with atrial fibrillation or flutter. Am J Med. 2002;113(5):365–70.

    Article  PubMed  Google Scholar 

  63. Badheka AO, Rathod A, Kizilbash MA, Garg N, Mohamad T, Afonso L, et al. Influence of obesity on outcomes in atrial fibrillation: yet another obesity paradox. Am J Med. 2010;123(7):646–51.

    Article  PubMed  Google Scholar 

  64. Wang J, Yang Y, Zhu J, Zhang H, Shao X, Tian L, et al. Overweight is associated with improved survival and outcomes in patients with atrial fibrillation. Clin Res Cardiol. 2014;103(7):533–42.

    Article  PubMed  Google Scholar 

  65. Sandhu RK, Ezekowitz J, Andersson U, Alexander JH, Granger CB, Halvorsen S, et al. The ‘obesity paradox’ in atrial fibrillation: observations from the ARISTOTLE (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation) trial. Eur Heart J. 2016;37(38):2869–78.

    Article  PubMed  Google Scholar 

  66. Camilleri B, Bridson JM, Sharma A, Halawa A. From chronic kidney disease to kidney transplantation: the impact of obesity and its treatment modalities. Transplant Rev. 2016;30(4):203–11.

    Article  Google Scholar 

  67. Mariscalco G, Wozniak MJ, Dawson AG, Serraino GF, Porter R, Nath M, et al. Body mass index and mortality among adults undergoing cardiac surgery clinical perspective: a nationwide study with a systematic review and meta-analysis. Circulation. 2017;135(9):850–63.

    Article  PubMed  Google Scholar 

  68. Lv W, Li S, Liao Y, Zhao Z, Che G, Chen M, et al. The “obesity paradox” does exist in patients undergoing transcatheter aortic valve implantation for aortic stenosis: a systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2017;25(4):633–42.

    Article  PubMed  Google Scholar 

  69. Tanaka A, Perlick A, Miller CC, Sandhu HK, Afaq S, Safi HJ, et al. Metabolic syndrome but not obesity adversely affects outcomes after open aortoiliac bypass surgery. Ann Vasc Surg. 2018;46:155–61.

    Article  PubMed  Google Scholar 

  70. Meier-Kriesche H-U, Arndorfer JA, Kaplan B. The impact of body mass index on renal transplant outcomes: a significant independent risk factor for graft failure and patient death. Transplantation. 2002;73(1):70–4.

    Article  PubMed  Google Scholar 

  71. Wannamethee SG, Shaper AG, Whincup PH, Lennon L, Papacosta O, Sattar N. The obesity paradox in men with coronary heart disease and heart failure: the role of muscle mass and leptin. Int J Cardiol. 2014;171(1):49–55.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zavin A, Daniels K, Arena R, Allsup K, Lazzari A, Joseph J, et al. Adiposity facilitates increased strength capacity in heart failure patients with reduced ejection fraction. Int J Cardiol. 2013;167(6):2468–71.

    Article  PubMed  Google Scholar 

  73. Coutinho T, Goel D, Correa de Sa RE, Carter DO, Hodge C, Kragelund AM, et al. Combining body mass index with measures of central obesity in the assessment of mortality in subjects with coronary disease: role of ‘normal weight central obesity’. J Am Coll Cardiol. 2013;61(5):553–60.

    Article  PubMed  Google Scholar 

  74. De Schutter A, Lavie CJ, Kachur S, Patel DA, Milani RV. Body composition and mortality in a large cohort with preserved ejection fraction: untangling the obesity paradox. Mayo Clin Proc. 2014;89(8):1072–9.

    Article  PubMed  Google Scholar 

  75. Khalid U, Ather S, Bavishi C, Chan W, Loehr LR, Wruck LM, et al. Pre-morbid body mass index and mortality after incident heart failure: the ARIC Study. J Am Coll Cardiol. 2014;64(25):2743–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ahmad FS, Ning H, Rich JD, Yancy CW, Lloyd-Jones DM, Wilkins JT. Hypertension, obesity, diabetes, and heart failure–free survival. JACC Heart Fail. 2016;4(12):911–9.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mohamed-Ali V, Goodrick S, Bulmer K, Holly JM, Yudkin JS, Coppack SW. Production of soluble tumor necrosis factor receptors by human subcutaneous adipose tissue in vivo. Am J Phys. 1999;277(6 Pt 1):E971–5.

    CAS  Google Scholar 

  78. Khan H, Kella D, Rauramaa R, Savonen K, Lloyd MS, Laukkanen JA. Cardiorespiratory fitness and atrial fibrillation: a population-based follow-up study. Heart Rhythm. 2015;12(7):1424–30.

    Article  PubMed  Google Scholar 

  79. Qureshi WT, Alirhayim Z, Blaha MJ, Juraschek SP, Keteyian SJ, Brawner CA, et al. Cardiorespiratory fitness and risk of incident atrial fibrillation: results from the Henry Ford ExercIse Testing (FIT) Project. Circulation. 2015;131(21):1827–34. https://doi.org/10.1161/CIRCULATIONAHA.114.014833.

    Article  PubMed  Google Scholar 

  80. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep Wash DC 1974. 1985;100(2):126–31.

    CAS  Google Scholar 

  81. Gander JC, Sui X, Hébert JR, Hazlett LJ, Cai B, Lavie CJ, et al. Association of cardiorespiratory fitness with coronary heart disease in asymptomatic men. Mayo Clin Proc. 2015;90(10):1372–9.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Barlow CE, DeFina LF, Radford NB, Berry JD, Cooper KH, Haskell WL, et al. Cardiorespiratory fitness and long-term survival in “low-risk” adults. J Am Heart Assoc Cardiovasc Cerebrovasc Dis [Internet]. 2012 [cited 2017 Oct 31];1(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3487345/.

  83. Kupsky DF, Ahmed AM, Sakr S, Qureshi WT, Brawner CA, Blaha MJ, et al. Cardiorespiratory fitness and incident heart failure: The Henry Ford Exercise Testing (FIT) Project. Am Heart J. 2017;185(Suppl C):35–42.

    Article  PubMed  Google Scholar 

  84. Pandey A, Patel M, Gao A, Willis BL, Das SR, Leonard D, et al. Changes in mid-life fitness predicts heart failure risk at a later age independent of interval development of cardiac and noncardiac risk factors: the Cooper Center Longitudinal Study. Am Heart J. 2015;169(2):290–297.e1.

    Article  PubMed  Google Scholar 

  85. Farrell SW, Finley CE, Radford NB, Haskell WL. Cardiorespiratory fitness, body mass index, and heart failure mortality in MenClinical perspective: Cooper Center Longitudinal Study. Circ Heart Fail. 2013;6(5):898–905.

    Article  PubMed  Google Scholar 

  86. O’Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301(14):1439.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pathak RK, Elliott A, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, et al. Impact of CARDIOrespiratory FITness on arrhythmia recurrence in obese individuals with atrial fibrillation: the CARDIO-FIT Study. J Am Coll Cardiol. 2015;66(9):985–96.

    Article  PubMed  Google Scholar 

  88. Soares-Miranda L, Sattelmair J, Chaves P, Duncan G, Siscovick DS, Stein PK, et al. Physical activity and heart rate variability in older adults: the Cardiovascular Health Study. Circulation. 2014;129(21):2100–10.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc Cardiovasc Cerebrovasc Dis [Internet]. 2013 [cited 2017 Oct 31];2(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603230/.

  90. Tinken TM, Thijssen DHJ, Black MA, Cable NT, Green DJ. Time course of change in vasodilator function and capacity in response to exercise training in humans. J Physiol. 2008;586(Pt 20):5003–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Myrstad M, Nystad W, Graff-Iversen S, Thelle DS, Stigum H, Aarønæs M, et al. Effect of years of endurance exercise on risk of atrial fibrillation and atrial flutter. Am J Cardiol. 2014;114(8):1229–33.

    Article  PubMed  Google Scholar 

  92. Guasch E, Nattel S. CrossTalk proposal: prolonged intense exercise training does lead to myocardial damage. J Physiol. 2013;591(Pt 20):4939–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gregg EW, Gerzoff RB, Thompson TJ, Williamson DF. Intentional weight loss and death in overweight and obese U.S. adults 35 years of age and older. Ann Intern Med. 2003;138(5):383–9.

    Article  PubMed  Google Scholar 

  94. Allison DB, Zannolli R, Faith MS, Heo M, Pietrobelli A, VanItallie TB, et al. Weight loss increases and fat loss decreases all-cause mortality rate: results from two independent cohort studies. Int J Obes Relat Metab Disord. 1999;23(6):603–11.

    Article  CAS  PubMed  Google Scholar 

  95. Moholdt T, Lavie CJ, Nauman J. Sustained physical activity, not weight loss, associated with improved survival in coronary heart disease. J Am Coll Cardiol. 2018;71(10):1094–101.

    Article  PubMed  Google Scholar 

  96. Sierra-Johnson J, Romero-Corral A, Somers VK, Lopez-Jimenez F, Thomas RJ, Squires RW, et al. Prognostic importance of weight loss in patients with coronary heart disease regardless of initial body mass index. Eur J Cardiovasc Prev Rehabil. 2008;15(3):336–40.

    Article  PubMed  Google Scholar 

  97. Arsenault BJ, Rana JS, Lemieux I, Després J-P, Kastelein JJP, Boekholdt SM, et al. Physical inactivity, abdominal obesity and risk of coronary heart disease in apparently healthy men and women. Int J Obes. 2009;34(2):340–7.

    Article  Google Scholar 

  98. Kaminsky LA, Arena R, Beckie TM, Brubaker PH, Church TS, Forman DE, et al. The importance of cardiorespiratory fitness in the United States: the need for a National Registry: a policy statement from the American Heart Association. Circulation. 2013;127(5):652–62.

    Article  PubMed  Google Scholar 

  99. Li TY, Rana JS, Manson JE, Willett WC, Stampfer MJ, Colditz GA, et al. Obesity as compared with physical activity in predicting risk of coronary heart disease in women. Circulation. 2006;113(4):499–506.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Katzmarzyk PT, Church TS, Blair SN. Cardiorespiratory fitness attenuates the effects of the metabolic syndrome on all-cause and cardiovascular disease mortality in men. Arch Intern Med. 2004;164(10):1092–7.

    Article  PubMed  Google Scholar 

  101. Sui X, Laditka JN, Hardin JW, Blair SN. Estimated functional capacity predicts mortality in older adults. J Am Geriatr Soc. 2007;55(12):1940–7.

    Article  PubMed  PubMed Central  Google Scholar 

  102. McAuley PA, Artero EG, Sui X, Lee D, Church TS, Lavie CJ, et al. The obesity paradox, cardiorespiratory fitness, and coronary heart disease. Mayo Clin Proc. 2012;87(5):443–51.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Moholdt T, Lavie CJ, Nauman J. Interaction of physical activity and body mass index on mortality in coronary heart disease: data from the Nord-Trøndelag Health Study. Am J Med. 2017;130(8):949–57.

    Article  PubMed  Google Scholar 

  104. Fogelholm M. Physical activity, fitness and fatness: relations to mortality, morbidity and disease risk factors. A systematic review. Obes Rev. 2010;11(3):202–21.

    Article  CAS  PubMed  Google Scholar 

  105. McAuley PA, Kokkinos PF, Oliveira RB, Emerson BT, Myers JN. Obesity paradox and cardiorespiratory fitness in 12,417 male veterans aged 40 to 70 years. Mayo Clin Proc. 2010;85(2):115–21.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zafrir B, Salman N, Amir O. Joint impact of body mass index and physical capacity on mortality in patients with systolic heart failure. Am J Cardiol. 2014;113(7):1217–21.

    Article  PubMed  Google Scholar 

  107. Goel K, Thomas RJ, Squires RW, Coutinho T, Trejo-Gutierrez JF, Somers VK, et al. Combined effect of cardiorespiratory fitness and adiposity on mortality in patients with coronary artery disease. Am Heart J. 2011;161(3):590–7.

    Article  PubMed  Google Scholar 

  108. Kokkinos P, Faselis C, Myers J, Pittaras A, Sui X, Zhang J, et al. Cardiorespiratory fitness and the paradoxical BMI-mortality risk association in male veterans. Mayo Clin Proc. 2014;89(6):754–62.

    Article  PubMed  Google Scholar 

  109. Clark AL, Fonarow GC, Horwich TB. Impact of cardiorespiratory fitness on the obesity paradox in patients with systolic heart failure. Am J Cardiol. 2015;115(2):209–13.

    Article  PubMed  Google Scholar 

  110. Lavie CJ, De Schutter A, Alpert MA, Mehra MR, Milani RV, Ventura HO. Obesity paradox, cachexia, frailty, and heart failure. Heart Fail Clin. 2014;10(2):319–26.

    Article  PubMed  Google Scholar 

  111. Vissers D, Hens W, Taeymans J, Baeyens J-P, Poortmans J, Gaal LV. The effect of exercise on visceral adipose tissue in overweight adults: a systematic review and meta-analysis. PLoS One. 2013;8(2):e56415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bekfani T, Pellicori P, Morris DA, Ebner N, Valentova M, Steinbeck L, et al. Sarcopenia in patients with heart failure with preserved ejection fraction: impact on muscle strength, exercise capacity and quality of life. Int J Cardiol. 2016;222(Suppl C):41–6.

    Article  PubMed  Google Scholar 

  113. Lavie CJ, De Schutter A, Patel DA, Romero-Corral A, Artham SM, Milani RV. Body composition and survival in stable coronary heart disease: impact of lean mass index and body fat in the “obesity paradox”. J Am Coll Cardiol. 2012;60(15):1374–80.

    Article  PubMed  Google Scholar 

  114. Lavie CJ, De Schutter A, Patel D, Artham SM, Milani RV. Body composition and coronary heart disease mortality—an obesity or a lean paradox? Mayo Clin Proc. 2011;86(9):857–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Budoff MJ. Exercise capacity and biological age. Heart. 2016;102(6):415.

    Article  PubMed  Google Scholar 

  116. Lavie CJ, Kokkinos P, Ortega FB. Survival of the fittest—promoting fitness throughout the life span. Mayo Clin Proc. 2017;92(12):1743–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl J. Lavie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, M.P., Kachur, S., Lavie, C.J. (2019). The Obesity Paradox and Cardiorespiratory Fitness. In: Kokkinos, P., Narayan, P. (eds) Cardiorespiratory Fitness in Cardiometabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-04816-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04816-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04815-0

  • Online ISBN: 978-3-030-04816-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics