Skip to main content

Bees Detection on Images: Study of Different Color Models for Neural Networks

  • Conference paper
  • First Online:
Distributed Computing and Internet Technology (ICDCIT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11319))

Abstract

This paper presents an approach to bee detection in video streams using a neural network classifier. We describe the motivation for our research and the methodology of data acquisition. The main contribution to this work is a comparison of different color models used as an input format for a feedforward convolutional architecture applied to bee detection. The detection process has is based on a neural binary classifier that classifies ROI windows in frames taken from video streams to determine whether or not the window contains bees. Due to the type of application, we tested two methods of partitioning data into training and test subsets: video-based (some video for training, the rest for testing) and individual based (some bees for training, the rest for testing). The tournament-based algorithm was implemented to aggregate the results of classification. The manually tagged datasets we used for our experiments have been made publicly available. Based on our analysis of the results, we drew conclusions that the best color models are RGB and 3-channeled color models: RGB and HSV are significantly better than black & white or the H channel from HSV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/metaflow-ai/hive.

  2. 2.

    https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=8185&context=etd.

  3. 3.

    https://mspace.lib.umanitoba.ca/handle/1993/32981.

  4. 4.

    http://matpalm.com/blog/counting_bees/.

  5. 5.

    https://github.com/qaprosoft/labelImg.

  6. 6.

    http://www.releasewire.com/press-releases/the-beescanning-app-is-saving-bees-worldwide-through-deep-learning-technology-808184.htm.

References

  1. Wario, F., Wild, B., Rojas, R., Landgraf, T.: Automatic detection and decoding of honey bee waggle dances. PloS one 12, e0188626 (2017)

    Article  Google Scholar 

  2. Othman, M.F., Shazali, K.: Wireless sensor network applications: a study in environment monitoring system. Proc. Eng. 41, 1204–1210 (2012)

    Article  Google Scholar 

  3. Tu, G.J., Hansen, M.K., Kryger, P., Ahrendt, P.: Automatic behaviour analysis system for honeybees using computer vision. Comput. Electron. Agric. 122, 10–18 (2016)

    Article  Google Scholar 

  4. Zacepins, A., Stalidzans, E., Meitalovs, J.: Application of information technologies in precision apiculture. In: Proceedings of the 13th International Conference on Precision Agriculture, ICPA 2012 (2012)

    Google Scholar 

  5. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  6. Bradbury, J.: Linear Predictive Coding. Mc G. Hill, New York (2000)

    Google Scholar 

  7. Cejrowski, T., Szymański, J., Mora, H., Gil, D.: Detection of the bee queen presence using sound analysis. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10752, pp. 297–306. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75420-8_28

    Chapter  Google Scholar 

  8. Campbell, J., Mummert, L., Sukthankar, R.: Video monitoring of honey bee colonies at the hive entrance. Vis. Obs. Anal. Anim. Insect Behav. ICPR 8, 1–4 (2008)

    Google Scholar 

  9. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of Bipartite graph matching. Image Vis. Comput. 27, 950–959 (2009)

    Article  Google Scholar 

  10. Chiron, G., Gomez-Krämer, P., Ménard, M.: Detecting and tracking honeybees in 3D at the beehive entrance using stereo vision. EURASIP J. Image Video Process. 2013, 59 (2013)

    Article  Google Scholar 

  11. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer, Heidelberg (2009)

    Book  Google Scholar 

  12. Tiwari, A.: A deep learning approach to recognizing bees in video analysis of bee traffic (2018)

    Google Scholar 

  13. Rodríguez, I., Branson, K., Acuña, E., Agosto-Rivera, J., Giray, T., Mégret, R.: Honeybee detection and pose estimation using convolutional neural networks. Technical report, RFIAP (2018)

    Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  15. Duan, L., Shen, M., Gao, W., Cui, S., Deussen, O.: Bee pose estimation from single images with convolutional neural network. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 2836–2840. IEEE (2017)

    Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  17. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  18. Porwik, P., Lisowska, A.: The Haar-wavelet transform in digital image processing: its status and achievements. Mach. Graph. Vis. 13, 79–98 (2004)

    MATH  Google Scholar 

  19. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)

    Article  Google Scholar 

  20. Dembski, J., Smiatacz, M.: Modular machine learning system for training object detection algorithms on a supercomputer. In: Advances in System Science, pp. 353–361 (2010)

    Google Scholar 

  21. Hoo-Chang, S., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285 (2016)

    Article  Google Scholar 

  22. Girshick, R.B.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision, ICCV 2015, 7–13 December 2015, Santiago, Chile, pp. 1440–1448 (2015)

    Google Scholar 

  23. Pinheiro, P.H.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks, pp. 1713–1721 (2015)

    Google Scholar 

  24. Zarit, B.D., Super, B.J., Quek, F.K.: Comparison of five color models in skin pixel classification. In: Proceedings of International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, pp. 58–63. IEEE (1999)

    Google Scholar 

  25. Blickle, T., Thiele, L.: A mathematical analysis of tournament selection. In: ICGA, pp. 9–16. Citeseer (1995)

    Google Scholar 

  26. Erdos, P., Jacobson, M., Lehel, J.: Graphs realizing the same degree sequences and their respective clique numbers. Graph Theory Comb. Appl. 1, 439–449 (1991)

    MathSciNet  MATH  Google Scholar 

  27. Cannon, R.L., Dave, J.V., Bezdek, J.C.: Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2, 248–255 (1986)

    Article  Google Scholar 

  28. Szymański, J., Duch, W.: Self organizing maps for visualization of categories. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7663, pp. 160–167. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34475-6_20

    Chapter  Google Scholar 

  29. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one 10, e0130140 (2015)

    Article  Google Scholar 

  30. Ferrari, S., Silva, M., Guarino, M., Berckmans, D.: Monitoring of swarming sounds in bee hives for early detection of the swarming period. Comput. Electron. Agric. 64, 72–77 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by funds from the Faculty of Electronics Telecommunications and Informatics, Gdansk University of Technology and Cost Action CA 15118 FoodMC “Mathematical and Computer Science Methods for Food Science and Industry”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Szymański .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dembski, J., Szymański, J. (2019). Bees Detection on Images: Study of Different Color Models for Neural Networks. In: Fahrnberger, G., Gopinathan, S., Parida, L. (eds) Distributed Computing and Internet Technology. ICDCIT 2019. Lecture Notes in Computer Science(), vol 11319. Springer, Cham. https://doi.org/10.1007/978-3-030-05366-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05366-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05365-9

  • Online ISBN: 978-3-030-05366-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics