Skip to main content

MEMS/NEMS-Enabled Energy Harvesters as Self-Powered Sensors

  • Chapter
  • First Online:
Self-Powered and Soft Polymer MEMS/NEMS Devices

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Chapter 1 reviews the recent progress in kinetic MEMS/NEMS-enabled energy harvesters as self-powered sensors. Recent advances and challenges in MEMS/NEMS-enabled self-sustained sensor working mechanisms including electromagnetic, piezoelectric, electrostatic, triboelectric, and magnetostrictive are reviewed and discussed. Recent advances in Internet of Things (IoT) and sensor networks reveal new insight into the understanding of traditional power sources with the new characteristics of mobility, sustainability, and availability. Individually, the power consumption of each sensor unit is low; however, the number of units deployed is huge. As predicted by Cisco, trillions of sensors will be distributed on the earth by 2020. Conventional technologies which employ batteries to supply power may not be the choice. Energy harvesting systems as self-sustained power sources are capable of capturing and transforming unused ambient energy into the electrical energy. Intensive efforts during the last two decades toward the development of micro-/nanoelectromechanical systems (MEMS/NEMS)-enabled energy harvesting technologies have yield breakthroughs in self-powered sensor evolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sauerbrey, J., Schmitt-Landsiedel, D., & Thewes, R. (2003). A 0.5-V 1-/spl mu/W successive approximation ADC. IEEE Journal of Solid-State Circuits, 38(7), 1261–1265.

    Article  Google Scholar 

  2. Steingart, D. (2009). Power sources for wireless sensor networks. In S. Priya & D. Inman (Eds.), Energy harvesting technologies (pp. 267–286). New York: Springer.

    Chapter  Google Scholar 

  3. Knight, C., Davidson, J., & Behrens, S. (2008). Energy options for wireless sensor nodes. Sensors, 8(12), 8037–8066.

    Article  Google Scholar 

  4. Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1), 18–27.

    Article  Google Scholar 

  5. Xie, J., Chengkuo, L., & Hanhua, F. (2010). Design, fabrication, and characterization of CMOS MEMS-based thermoelectric power generators. Journal of Microelectromechanical Systems, 19(2), 317–324.

    Article  Google Scholar 

  6. Roundy, S., Wright, P. K., & Rabaey, J. (2003). A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 26(11), 1131–1144.

    Article  Google Scholar 

  7. Hudak, N. S., & Amatucci, G. G. (2008). Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. Journal of Applied Physics, 103, 101301.

    Article  Google Scholar 

  8. Zhou, S. X., & Zuo, L. (2018). Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Communications in Nonlinear Science and Numerical Simulation, 61, 271–284.

    Article  MathSciNet  Google Scholar 

  9. Chen, G. J., Li, Y. F., Xiao, H. M., & Zhu, X. (2017). A micro-oscillation-driven energy harvester based on a flexible bipolar electret membrane with high output power. Journal of Materials Chemistry A, 5, 4150–4155.

    Article  Google Scholar 

  10. Halim, M. A., et al. (2018). An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion. Applied Energy, 217, 66–74.

    Article  Google Scholar 

  11. Zhang, X., et al. (2018). Broad bandwidth vibration energy harvester based on thermally stable wavy fluorinated ethylene propylene electret films with negative charges. Journal of Micromechanics and Microengineering, 28, 065012.

    Article  Google Scholar 

  12. Wang, Z. L. (2013). Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 7(11), 9533–9557.

    Article  Google Scholar 

  13. Roundy, S., Wright, P. K., & Pister, K. S. (2002). Micro-electrostatic vibration-to-electricity converters. Fuel Cells (methanol), 220(22), 1–10.

    Google Scholar 

  14. Sakane, Y., Suzuki, Y., & Kasagi, N. (Oct 2008). The development of a high-performance perfluorinated polymer electret and its application to micro power generation. Journal of Micromechanics and Microengineering, 18(10), 104011.

    Article  Google Scholar 

  15. Boisseau, S., Duret, A.-B., Chaillout, J.-J., & Despesse, G. (2012). New DRIE-patterned electrets for vibration energy harvesting. In EPJ Web of Conferences (Vol. 33, p. 02010). EDP Sciences. Les Ulis, France.

    Article  Google Scholar 

  16. Tao, K., Liu, S., Lye, S. W., Miao, J., & Hu, X. (2014). A three-dimensional electret-based micro power generator for low-level ambient vibrational energy harvesting. Journal of Micromechanics and Microengineering, 24(6), 065022.

    Article  Google Scholar 

  17. Tao, K., Miao, J., Lye, S. W., & Hu, X. (2015). Sandwich-structured two-dimensional MEMS electret power generator for low-level ambient vibrational energy harvesting. Sensors and Actuators A: Physical, 228, 95–103.

    Article  Google Scholar 

  18. Tao, K., Lye, S. W., Miao, J., Tang, L., & Hu, X. (2015). Out-of-plane electret-based MEMS energy harvester with the combined nonlinear effect from electrostatic force and a mechanical elastic stopper. Journal of Micromechanics and Microengineering, 25(10), 104014.

    Article  Google Scholar 

  19. Tao, K., Lye, S. W., Miao, J., & Hu, X. (2015). Design and implementation of an out-of-plane electrostatic vibration energy harvester with dual-charged electret plates. Microelectronic Engineering, 135(0), 32–37.

    Article  Google Scholar 

  20. Tao, K., Wu, J., Tang, L., Hu, L., Lye, S. W., & Miao, J. (2017). Enhanced electrostatic vibrational energy harvesting using integrated opposite-charged electrets. Journal of Micromechanics and Microengineering, 27(4), 044002.

    Article  Google Scholar 

  21. Tao, K., Tang, L. H., Wu, J., Lye, S. W., Chang, H. L., & Miao, J. M. (2018). Investigation of multimodal electret-based MEMS energy harvester with impact-induced nonlinearity. Journal of Microelectromechanical Systems, 27(2), 276–288.

    Article  Google Scholar 

  22. Williams, C. B., & Yates, R. B. (Mar-Apr 1996). Analysis of a micro-electric generator for microsystems. Sensors and Actuators a-Physical, 52(1–3), 8–11.

    Article  Google Scholar 

  23. Tao, K., Ding, G., Wang, P., Yang, Z., & Wang, Y. (2012). Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on, 2012, pp. 1237–1240.

    Google Scholar 

  24. Tao, K., Wu, J., Kottapalli, A. G. P., et al. (2017). Micro-patterning of resin-bonded NdFeB magnet for a fully integrated electromagnetic actuator. Solid-State Electronics, 138, 66–72.

    Article  Google Scholar 

  25. Tao, K., Wu, J., Tang, L., et al. (2016). A novel two-degree-of-freedom MEMS electromagnetic vibration energy harvester. Journal of Micromechanics and Microengineering, 26(3), 035020.

    Article  Google Scholar 

  26. Davino, D. Kinetic energy harvesting by magnetostrictive materials. Available: http://www.sigmaaldrich.com/technical-documents/articles/materials-science/kinetic-energy-harvesting.html

  27. Ueno, T. (2015). Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications. Journal of Applied Physics, 117, 17A740.

    Article  Google Scholar 

  28. Lee, B., Lin, S., Wu, W., Wang, X., Chang, P., & Lee, C. (2009). Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film. Journal of Micromechanics and Microengineering, 19(6), 065014.

    Article  Google Scholar 

  29. Wang, P. H., et al. (2018). Complementary electromagnetic-triboelectric active Sensor for detecting multiple mechanical triggering. Advanced Functional Materials, 1705808, 1–9.

    Google Scholar 

  30. Liu, H., Zhang, S., Kathiresan, R., Kobayashi, T., & Lee, C. (2012). Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability. Applied Physics Letters, 100(22), 223905–223903.

    Article  Google Scholar 

  31. Xuefeng, H., Zhengguo, S., Yaoqing, C., & You, Z. (2013). A micromachined low-frequency piezoelectric harvester for vibration and wind energy scavenging. Journal of Micromechanics and Microengineering, 23(12), 125009.

    Article  Google Scholar 

  32. Qi, Y., Kim, J., Nguyen, T. D., Lisko, B., Purohit, P. K., & McAlpine, M. C. (2011). Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Letters, 11(3), 1331–1336.

    Article  Google Scholar 

  33. Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771), 242–246.

    Article  Google Scholar 

  34. Xu, S., Lao, C., Weintraub, B., & Wang, Z. L. (2008). Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. Journal of Materials Research, 23(8), 2072–2077.

    Article  Google Scholar 

  35. Hu, Y., Xu, C., Zhang, Y., Lin, L., Snyder, R. L., & Wang, Z. L. (2011). A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. Advanced Materials, 23(35), 4068–4071.

    Article  Google Scholar 

  36. Lee, M., Bae, J., Lee, J., Lee, C.-S., Hong, S., & Wang, Z. L. (2011). Self-powered environmental sensor system driven by nanogenerators. Energy & Environmental Science, 4(9), 3359–3363.

    Article  Google Scholar 

  37. Chang, C., Tran, V. H., Wang, J., Fuh, Y.-K., & Lin, L. (2010). Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Letters, 10(2), 726–731.

    Article  Google Scholar 

  38. Zhou, Y. S., et al. (2014). Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Advanced Materials, 26(11), 1719–1724.

    Article  Google Scholar 

  39. Lin, L., et al. (2013). Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Letters, 13(6), 2916–2923.

    Article  Google Scholar 

  40. Lin, L., Wang, S., Niu, S., Liu, C., Xie, Y., & Wang, Z. L. (2014). Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Applied Materials & Interfaces, 6(4), 3031–3038.

    Article  Google Scholar 

  41. Fan, F.-R., Lin, L., Zhu, G., Wu, W., Zhang, R., & Wang, Z. L. (2012). Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Letters, 12(6), 3109–3114.

    Article  Google Scholar 

  42. Lin, L., et al. (2013). Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano, 7(9), 8266–8274.

    Article  Google Scholar 

  43. Zhu, G., et al. (2014). Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Letters, 14(6), 3208–3213.

    Article  Google Scholar 

  44. Yang, J., Chen, J., Liu, Y., Yang, W., Su, Y., & Wang, Z. L. (2014). Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano, 8(3), 2649–2657.

    Article  Google Scholar 

  45. Yu, A., et al. (2015). Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator. Nano Research, 8(3), 765–773.

    Article  Google Scholar 

  46. Lin, Z. H., et al. (2013). A self-powered triboelectric nanosensor for mercury ion detection. Angewandte Chemie International Edition, 52(19), 5065–5069.

    Article  Google Scholar 

  47. Li, Z., et al. (2015). β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy & Environmental Science, 8(3), 887–896.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China (Grant No. 51705429), the Fundamental Research Funds for the Central Universities, and the Key Laboratory fund of Science and Technology on Micro-system Laboratory (No. 614280401010417).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Tao , Jin Wu or Lihua Tang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tao, K., Chang, H., Wu, J., Tang, L., Miao, J. (2019). MEMS/NEMS-Enabled Energy Harvesters as Self-Powered Sensors. In: Self-Powered and Soft Polymer MEMS/NEMS Devices. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-05554-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05554-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05553-0

  • Online ISBN: 978-3-030-05554-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics