Skip to main content

Improving SNR and Reducing Training Time of Classifiers in Large Datasets via Kernel Averaging

  • Conference paper
  • First Online:
Brain Informatics (BI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11309))

Included in the following conference series:

Abstract

Kernel methods are of growing importance in neuroscience research. As an elegant extension of linear methods, they are able to model complex non-linear relationships. However, since the kernel matrix grows with data size, the training of classifiers is computationally demanding in large datasets. Here, a technique developed for linear classifiers is extended to kernel methods: In linearly separable data, replacing sets of instances by their averages improves signal-to-noise ratio (SNR) and reduces data size. In kernel methods, data is linearly non-separable in input space, but linearly separable in the high-dimensional feature space that kernel methods implicitly operate in. It is shown that a classifier can be efficiently trained on instances averaged in feature space by averaging entries in the kernel matrix. Using artificial and publicly available data, it is shown that kernel averaging improves classification performance substantially and reduces training time, even in non-linearly separable data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayres-de Campos, D., Bernardes, J., Garrido, A., Marques-de Sá, J., Pereira-Leite, L.: Sisporto 2.0: a program for automated analysis of cardiotocograms. J. Matern. Fetal Med. 9(5), 311–318 (2000). https://doi.org/10.1002/1520-6661(200009/10)9:5<311::AID-MFM12>3.0.CO;2-9

    Google Scholar 

  2. Chang, C.C, Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  3. Choudhury, S., Fishman, J.R., McGowan, M.L., Juengst, E.T.: Big data, open science and the brain: lessons learned from genomics. Front. Hum. Neurosci. 8, 239 (2014). https://doi.org/10.3389/fnhum.2014.00239

    Article  Google Scholar 

  4. Cichy, R.M., Pantazis, D.: Multivariate pattern analysis of MEG and EEG: a comparison of representational structure in time and space. NeuroImage 158, 441–454 (2017). https://doi.org/10.1016/j.neuroimage.2017.07.023

    Article  Google Scholar 

  5. Cichy, R.M., Ramirez, F.M., Pantazis, D.: Can visual information encoded in cortical columns be decoded from magnetoencephalography data in humans? NeuroImage 121, 193–204 (2015). https://doi.org/10.1016/j.neuroimage.2015.07.011

    Article  Google Scholar 

  6. Danziger, S.A., et al.: Predicting positive p53 cancer rescue regions using most informative positive (MIP) active learning. PLoS Comput. Biol. 5(9), e1000498 (2009). https://doi.org/10.1371/journal.pcbi.1000498

    Article  MathSciNet  Google Scholar 

  7. Dima, D.C., Perry, G., Singh, K.D.: Spatial frequency supports the emergence of categorical representations in visual cortex during natural scene perception. NeuroImage 179, 102–116 (2018). https://doi.org/10.1016/J.NEUROIMAGE.2018.06.033

    Article  Google Scholar 

  8. Gonzalez-Moreno, A., et al.: Signal-to-noise ratio of the MEG signal after preprocessing. J. Neurosci. Methods 222, 56–61 (2014). https://doi.org/10.1016/J.JNEUMETH.2013.10.019

    Article  Google Scholar 

  9. Hainmueller, J., Hazlett, C., Alvarez, R.M.: Kernel regularized least squares: reducing misspecification bias with a flexible and interpretable machine learning approach. Polit. Anal. 22(2), 143–168 (2014). https://doi.org/10.1093/pan/mpt019

    Article  Google Scholar 

  10. Hinton, G.E.: Machine learning for neuroscience. Neural Syst. Circ. 1(1), 12 (2011). https://doi.org/10.1186/2042-1001-1-12

    Article  Google Scholar 

  11. Hwang, H.J., et al.: A gaze independent brain-computer interface based on visual stimulation through closed eyelids. Sci. Rep. 5, 15890 (2015). https://doi.org/10.1038/srep15890

    Article  Google Scholar 

  12. Jäkel, F., Schölkopf, B., Wichmann, F.A.: Does cognitive science need kernels? Trends Cogn. Sci. 13, 381–388 (2009). https://www.sciencedirect.com/science/article/pii/S1364661309001430

    Article  Google Scholar 

  13. Orrù, G., Pettersson-Yeo, W., Marquand, A.F., Sartori, G., Mechelli, A.: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36(4), 1140–1152 (2012). https://doi.org/10.1016/j.neubiorev.2012.01.004

    Article  Google Scholar 

  14. Schölkopf, B., Smola, A.J.: A short introduction to learning with kernels. In: Mendelson, S., Smola, A.J. (eds.) Advanced Lectures on Machine Learning. Lecture Notes in Computer Science, vol. 2600, pp. 41–64. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36434-X_2

    Chapter  MATH  Google Scholar 

  15. Schrouff, J., et al.: PRoNTo: pattern recognition for neuroimaging toolbox. Neuroinformatics 11(3), 319–337 (2013). https://doi.org/10.1007/s12021-013-9178-1

    Article  Google Scholar 

  16. Schrouff, J., Mourão-Miranda, J., Phillips, C., Parvizi, J.: Decoding intracranial EEG data with multiple kernel learning method. J. Neurosci. Methods 261, 19–28 (2016). https://doi.org/10.1016/J.JNEUMETH.2015.11.028

    Article  Google Scholar 

  17. Treder, M.S., Purwins, H., Miklody, D., Sturm, I., Blankertz, B.: Decoding auditory attention to instruments in polyphonic music using single-trial EEG classification. J. Neural Eng. 11(2), 026009 (2014). https://doi.org/10.1088/1741-2560/11/2/026009

    Article  Google Scholar 

  18. Wang, X., Xing, E.P., Schaid, D.J.: Kernel methods for large-scale genomic data analysis. Brief. Bioinf. 16(2), 183–192 (2015). https://doi.org/10.1093/bib/bbu024

    Article  Google Scholar 

  19. Weinstein, J.N., et al.: The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45(10), 1113–1120 (2013). https://doi.org/10.1038/ng.2764

    Article  Google Scholar 

  20. Youssofzadeh, V., McGuinness, B., Maguire, L.P., Wong-Lin, K.: Multi-kernel learning with dartel improves combined MRI-PET classification of Alzheimer’s disease in AIBL data: group and individual analyses. Front. Hum. Neurosci. 11, 380 (2017). https://doi.org/10.3389/fnhum.2017.00380

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias S. Treder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Treder, M.S. (2018). Improving SNR and Reducing Training Time of Classifiers in Large Datasets via Kernel Averaging. In: Wang, S., et al. Brain Informatics. BI 2018. Lecture Notes in Computer Science(), vol 11309. Springer, Cham. https://doi.org/10.1007/978-3-030-05587-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05587-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05586-8

  • Online ISBN: 978-3-030-05587-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics