Skip to main content

Deep Recurrent Neural Network for Multi-target Filtering

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11296))

Included in the following conference series:

Abstract

This paper addresses the problem of fixed motion and measurement models for multi-target filtering using an adaptive learning framework. This is performed by defining target tuples with random finite set terminology and utilisation of recurrent neural networks with a long short-term memory architecture. A novel data association algorithm compatible with the predicted tracklet tuples is proposed, enabling the update of occluded targets, in addition to assigning birth, survival and death of targets. The algorithm is evaluated over a commonly used filtering simulation scenario, with highly promising results (https://github.com/mehryaragha/MTF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, pp. 265–283 (2016)

    Google Scholar 

  2. Bay, A., Lepsoy, S., Magli, E.: Stable limit cycles in recurrent neural networks. In: 2016 International Conference on Communications (COMM), pp. 89–92 (2016)

    Google Scholar 

  3. Emambakhsh, M., Evans, A.: Nasal patches and curves for expression-robust 3D face recognition. IEEE Trans. PAMI 39(5), 995–1007 (2017)

    Article  Google Scholar 

  4. Fantacci, C., Vo, B.N., Vo, B.T., Battistelli, G., Chisci, L.: Robust fusion for multisensor multiobject tracking. IEEE Signal Process. Lett. 25(5), 640–644 (2018)

    Article  Google Scholar 

  5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  7. Mahler, R.: PHD filters of higher order in target number. IEEE Trans. Aerosp. Electron. Syst. 43(4), 1523–1543 (2007)

    Article  Google Scholar 

  8. Mahler, R.P.S.: Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst. 39(4), 1152–1178 (2003)

    Article  Google Scholar 

  9. Milan, A., Rezatofighi, S., Dick, A., Reid, I., Schindler, K.: Online multi-target tracking using recurrent neural networks. In: AAAI Conference on Artificial Intelligence Thirty (2017)

    Google Scholar 

  10. Nagappa, S., Delande, E.D., Clark, D.E., Houssineau, J.: A tractable forward-backward CPHD smoother. IEEE Trans. Aerosp. Electron. Syst. 53(1), 201–217 (2017)

    Article  Google Scholar 

  11. Reuter, S., Vo, B.T., Vo, B.N., Dietmayer, K.: The labeled multi-Bernoulli filter. IEEE Trans. Signal Process. 62(12), 3246–3260 (2014)

    Article  MathSciNet  Google Scholar 

  12. Schuhmacher, D., Vo, B.T., Vo, B.N.: A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Signal Process. 56(8), 3447–3457 (2008)

    Article  MathSciNet  Google Scholar 

  13. Vo, B.N., Ma, W.K.: The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process. 54(11), 4091–4104 (2006)

    Article  Google Scholar 

  14. Vo, B.N., Singh, S., Doucet, A.: Sequential Monte Carlo methods for multitarget filtering with random finite sets. IEEE Trans. Aerosp. Electron. Syst. 41(4), 1224–1245 (2005)

    Article  Google Scholar 

  15. Vo, B.N., Vo, B.T., Hoang, H.G.: An efficient implementation of the generalized labeled multi-Bernoulli filter. IEEE Trans. Signal Process. 65(8), 1975–1987 (2017)

    Article  MathSciNet  Google Scholar 

  16. Vo, B.N., Vo, B.T., Phung, D.: Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Trans. Signal Process. 62(24), 6554–6567 (2014)

    Article  MathSciNet  Google Scholar 

  17. Vo, B.N., Singh, S., Doucet, A.: Sequential Monte Carlo implementation of the PHD filter for multi-target tracking. In: Proceedings of the Sixth International Conference of Information Fusion, vol. 2, pp. 792–799 (2003)

    Google Scholar 

  18. Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. arXiv preprint arXiv:1702.00071 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehryar Emambakhsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Emambakhsh, M., Bay, A., Vazquez, E. (2019). Deep Recurrent Neural Network for Multi-target Filtering. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, WH., Vrochidis, S. (eds) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science(), vol 11296. Springer, Cham. https://doi.org/10.1007/978-3-030-05716-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05716-9_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05715-2

  • Online ISBN: 978-3-030-05716-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics