Skip to main content

Optical and Magnetic Functionalities on Molecule-Based Magnetic Materials

  • Chapter
  • First Online:
Progress in Photon Science

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 119))

Abstract

In this chapter, the optical and magnetic properties of multifunctional cyanido-bridged metal assemblies are introduced. Cyanido-bridged metal assemblies draw much attention due to their magnetic properties and functionalities. As for magnetic properties, they have an advantage to show long-range magnetic ordering due to strong magnetic couplings between magnetic metal ions via cyanide. In addition, the cyanido-bridged metal assemblies can acquire structural diversity and various electronic states by combination of metal ions and ligand, resulted in their functionalities. For examples, introduction of transition metal ions showing charge transfer and spin crossover could allow switching of spin states by external stimuli, and metal assemblies containing lanthanide ions are expected to show luminescence and slow magnetic relaxation. Herein, some cyanido-bridged metal assemblies with unique characters of photoinduced magnetization, luminescence, and slow magnetic relaxation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K.T. Lau, J. Lu, V.K. Varadan, F.K. Chang, J.P. Tu, P.M. Lam, Multi-functional Materials and Structures (Trans Tech Publications, Hong Kong, 2008)

    Google Scholar 

  2. S.M. Mukhopadhyay, Nanoscale Multifunctional Materials: Science and Applications (Wiley, New Jersey, 2012)

    Google Scholar 

  3. H. Tokoro, S. Ohkoshi, Dalton Trans. 40, 6825 (2011)

    Article  Google Scholar 

  4. E. Coronado, C. Gimnez-Saiz, C. Marti-Gastaldo, Engineering of Crystalline Materials Properties, ed. by J.J. Novoa, D. Braga, L. Addadi (Springer, Dordrecht, 2008), pp. 173

    Google Scholar 

  5. D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev. 36, 770 (2007)

    Article  Google Scholar 

  6. P. Dechambenoit, J.R. Long, Chem. Soc. Rev. 40, 3249 (2011)

    Article  Google Scholar 

  7. M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Chem. Soc. Rev. 38, 1330 (2009)

    Article  Google Scholar 

  8. S. Ohkoshi, H. Tokoro, Acc. Chem. Res. 45, 1749 (2012)

    Article  Google Scholar 

  9. E. Coronado, D. Gatteschi, J. Mater. Chem. 16, 2513 (2006)

    Article  Google Scholar 

  10. H. Tokoro, S. Ohkoshi, Bull. Chem. Soc. Jpn. 88, 227 (2015)

    Article  Google Scholar 

  11. O. Kahn, O. Cador, J. Larionova, C. Mathoniere, J.-P. Sutter, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 305(1) (1997)

    Google Scholar 

  12. C. Train, M. Gruselle, M. Verdaguer, Chem. Soc. Rev. 40, 3297 (2011)

    Article  Google Scholar 

  13. C. Train, R. Gheorghe, V. Krstic, L.-M. Chamoreau, N.S. Ovanesyan, G.L.J.A. Rikken, M. Gruselle, M. Verdaguer, Nat. Mater. 7, 729 (2008)

    Article  ADS  Google Scholar 

  14. K. Inoue, K. Kikuchi, M. Ohba, H. Okawa, Angew. Chem. Int. Ed. 42, 4810 (2003)

    Article  Google Scholar 

  15. S. Chorazy, R. Podgajny, W. Nitek, T. Fic, E. Gçrlich, M. Rams, B. Sieklucka, Chem. Com-mun. 49, 6731 (2013)

    Article  Google Scholar 

  16. S. Chorazy, K. Nakabayashi, K. Imoto, J. Mlynarski, B. Sieklucka, S. Ohkoshi, J. Am. Chem. Soc. 134, 16151 (2012)

    Article  Google Scholar 

  17. J. Ferrando-Soria, D. Cangussu, M. Eslava, Y. Journaux, R. Lescouézec, M. Julve, F. Lloret, J. Pasan, C. Ruiz-Perez, E. Lhotel, C. Paulsen, E. Pardo, Chem. Eur. J. 17, 12482 (2011)

    Article  Google Scholar 

  18. J.M. Bradley, A.J. Thomson, R. Inglis, C.J. Milios, E.K. Brechin, S. Piligkos, Dalton Trans. 39, 9904 (2010)

    Article  Google Scholar 

  19. T. Nuida, T. Matsuda, H. Tokoro, S. Sakurai, K. Hashimoto, S. Ohkoshi, J. Am. Chem. Soc. 127, 11604 (2005)

    Article  Google Scholar 

  20. S. Ohkoshi, K. Arai, Y. Sato, K. Hashimoto, Nat. Mater. 3, 857 (2004)

    Article  ADS  Google Scholar 

  21. Y. Tsunobuchi, W. Kosaka, T. Nuida, S. Ohkoshi, Cryst. Eng. Comm. 11, 2051 (2009)

    Article  Google Scholar 

  22. D. Pinkowicz, R. Podgajny, W. Nitek, M. Rams, A.M. Majcher, T. Nuida, S. Ohkoshi, B. Sieklucka, Chem. Mater. 23, 21 (2011)

    Article  Google Scholar 

  23. M. Komine, K. Imoto, Y. Miyamoto, K. Nakabayashi, S. Ohkoshi, Eur. J. Inorg. Chem., 1367 (2018)

    Google Scholar 

  24. C. Train, T. Nuida, R. Gheorghe, M. Gruselle, S. Ohkoshi, J. Am. Chem. Soc. 131, 16838 (2009)

    Article  Google Scholar 

  25. E. Pardo, C. Train, H. Liu, L.M. Chamoreau, B. Dhkil, K. Boubekeur, F. Lloret, K. Nakatani, H. Tokoro, S. Ohkoshi, M. Verdaguer, Angew. Chem. Int. Ed. 51, 8356 (2012)

    Article  Google Scholar 

  26. S. Ohkoshi, H. Tokoro, T. Matsuda, H. Takahashi, H. Irie, K. Hashimoto, Angew. Chem. Int. Ed. 46, 3238 (2007)

    Article  Google Scholar 

  27. S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, H. Tokoro, Nat. Chem. 3, 564 (2011)

    Article  Google Scholar 

  28. E.S. Koumousi, I.-R. Jeon, Q. Gao, P. Dechambenoit, D.N. Woodruff, P. Merzeau, L. Buisson, X. Jia, D. Li, F. Volatron, C. Mathonière, R. Clérac, J. Am. Chem. Soc. 136, 15461 (2014)

    Article  Google Scholar 

  29. O.N. Risset, P.A. Quintero, T.V. Brinzari, M.J. Andrus, M.W. Lufaso, M.W. Meisel, D.R. Talham, J. Am. Chem. Soc. 136, 15660 (2014)

    Article  Google Scholar 

  30. S. Ohkoshi, Y. Hamada, T. Matsuda, Y. Tsunobuchi, H. Tokoro. Chem. Mater. 20, 3048 (2008)

    Article  Google Scholar 

  31. S. Ohkoshi, S. Ikeda, T. Hozumi, T. Kashiwagi, K. Hashimoto, J. Am. Chem. Soc. 128, 5320 (2006)

    Article  Google Scholar 

  32. N. Ozaki, H. Tokoro, Y. Hamada, A. Namai, T. Matsuda, S. Kaneko, S. Ohkoshi, Adv. Funct. Mater. 22, 2089 (2012)

    Article  Google Scholar 

  33. S. Ohkoshi, S. Takano, K. Imoto, M. Yoshikiyo, A. Namai, H. Tokoro, Nat. Photonics 8, 65 (2014)

    Article  ADS  Google Scholar 

  34. J.-M. Rueff, J.-F. Nierengarten, P. Gillot, A. Demessence, O. Cregut, M. Drillon, P. Ra-bu, Chem. Mater. 16, 2933 (2004)

    Article  Google Scholar 

  35. E. Chelebaeva, J. Larionova, Y. Guari, R.A.S. Ferreira, L.D. Carlos, F.A. Almeida Paz, A. Trifonov, C. Guerin, Inorg. Chem. 48, 5983 (2009)

    Article  Google Scholar 

  36. Y. Miyamoto, T. Nasu, N. Ozaki, Y. Umeta, H. Tokoro, K. Nakabayashi, S. Ohkoshi, Dalton Trans. 45, 19249 (2016)

    Article  Google Scholar 

  37. Y. Umeta, S. Chorazy, K. Nakabayashi, S. Ohkoshi, Eur. J. Inorg. Chem., 1980 (2016)

    Google Scholar 

  38. S. Chorazy, K. Nakabayashi, S. Ohkoshi, B. Sieklucka, Chem. Mater. 26, 4072 (2014)

    Article  Google Scholar 

  39. S. Chorazy, M. Rams, K. Nakabayashi, B. Sieklucka, S. Ohkoshi, Chem. Eur. J. 22, 7371 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Ohkoshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakabayashi, K., Ohkoshi, Si., Chorazy, S. (2019). Optical and Magnetic Functionalities on Molecule-Based Magnetic Materials. In: Yamanouchi, K., Tunik, S., Makarov, V. (eds) Progress in Photon Science. Springer Series in Chemical Physics, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-030-05974-3_23

Download citation

Publish with us

Policies and ethics