Skip to main content

A Self-adaptive Differential Evolution with Fragment Insertion for the Protein Structure Prediction Problem

  • Conference paper
  • First Online:
Hybrid Metaheuristics (HM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11299))

Included in the following conference series:

Abstract

This work presents four hybrid methods based on the Self-adaptive Differential Evolution algorithm with fragment insertion applied to the protein structure prediction problem. The protein representation is the backbone torsion angles with side chain centroid coordinates. The fragment insertion is made by the Monte Carlo algorithm. The hybrid methods were compared with recent and compatible methods from the literature, where two proposed approaches achieved competitive results. The results have shown that using parameter control and fragment insertion greatly improves the results of the prediction when compared to fragment-less methods or without parameter control. Furthermore, an extra analysis was conducted using GDT-TS and TM-Score metrics to better understand the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berger, B., Leighton, T.: Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete. J. Comput. Biol. 5(1), 27–40 (1998)

    Article  Google Scholar 

  2. Berman, H.M., et al.: The protein data bank. Acta Crystallogr. Sect. D: Biol. Crystallogr. 58(6), 899–907 (2002)

    Article  Google Scholar 

  3. Borguesan, B., e Silva, M.B., Grisci, B., Inostroza-Ponta, M., Dorn, M.: APL: an angle probability list to improve knowledge-based metaheuristics for the three-dimensional protein structure prediction. Comput. Biol. Chem. 59, 142–157 (2015)

    Article  Google Scholar 

  4. Buchan, D.W., Minneci, F., Nugent, T.C., Bryson, K., Jones, D.T.: Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 41(W1), W349–W357 (2013)

    Article  Google Scholar 

  5. Dorn, M., e Silva, M.B., Buriol, L.S., Lamb, L.C.: Three-dimensional protein structure prediction: methods and computational strategies. Comput. Biol. Chem. 53, 251–276 (2014)

    Article  Google Scholar 

  6. Drenth, J.: Principles of Protein X-Ray Crystallography. Springer, New York (2007). https://doi.org/10.1007/0-387-33746-6

    Book  Google Scholar 

  7. Garza-Fabre, M., Kandathil, S.M., Handl, J., Knowles, J., Lovell, S.C.: Generating, maintaining, and exploiting diversity in a memetic algorithm for protein structure prediction. Evol. Comput. 24(4), 577–607 (2016)

    Article  Google Scholar 

  8. Habeck, M., Nilges, M., Rieping, W.: Replica-exchange Monte Carlo scheme for Bayesian data analysis. Phys. Rev. Lett. 94(1), 018105 (2005)

    Article  Google Scholar 

  9. Hart, W.E., Istrail, S.: Robust proofs of NP-hardness for protein folding: general lattices and energy potentials. J. Comput. Biol. 4(1), 1–22 (1997)

    Article  Google Scholar 

  10. Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2015)

    Article  Google Scholar 

  11. Liu, J., Li, G., Yu, J., Yao, Y.: Heuristic energy landscape paving for protein folding problem in the three-dimensional HP lattice model. Comput. Biol. Chem. 38, 17–26 (2012)

    Article  Google Scholar 

  12. Lopes, H.S.: Evolutionary algorithms for the protein folding problem: a review and current trends. In: Smolinski, T.G., Milanova, M.G., Hassanien, A.E. (eds.) Computational Intelligence in Biomedicine and Bioinformatics. SCI, vol. 151, pp. 297–315. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70778-3_12

    Chapter  Google Scholar 

  13. Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T., Tramontano, A.: Critical assessment of methods of protein structure prediction: progress and new directions in round XI. Proteins: Struct. Funct. Bioinf. 84(S1), 4–14 (2016)

    Article  Google Scholar 

  14. Narloch, P.H., Parpinelli, R.S.: The protein structure prediction problem approached by a cascade differential evolution algorithm using ROSETTA, pp. 294–299. IEEE (2017)

    Google Scholar 

  15. Nunes, L.F., Galvão, L.C., Lopes, H.S., Moscato, P., Berretta, R.: An integer programming model for protein structure prediction using the 3D-HP side chain model. Discrete Appl. Math. 198, 206–214 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Oliveira, S.H., Shi, J., Deane, C.M.: Building a better fragment library for de novo protein structure prediction. PloS One 10(4), e0123998 (2015)

    Article  Google Scholar 

  17. Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence; a survey. Int. J. Bio-Inspir. Comput. 3(1), 1–16 (2011)

    Article  Google Scholar 

  18. Parpinelli, R.S., Plichoski, G.F., Da Silva, R.S., Narloch, P.H.: A review of technique for on-line control of parameters in swarm intelligence and evolutionary computation algorithms. Int. J. Bio-Inspir. Comput. (IJBIC) (2019, accepted for publication)

    Google Scholar 

  19. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-31306-0

    Book  MATH  Google Scholar 

  20. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

    Article  Google Scholar 

  21. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimization. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1785–1791. IEEE (2005)

    Google Scholar 

  22. Silva, R.S., Parpinelli, R.S.: A multistage simulated annealing for protein structure prediction using Rosetta. In: Anais do Computer on the Beach, pp. 850–859 (2018)

    Google Scholar 

  23. Vanderbilt, D., Louie, S.G.: A Monte Carlo simulated annealing approach to optimization over continuous variables. J. Comput. Phys. 56(2), 259–271 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Walsh, G.: Proteins: Biochemistry and Biotechnology. Wiley, Hoboken (2002)

    Google Scholar 

  25. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011)

    Article  Google Scholar 

  26. Xu, J., Zhang, Y.: How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 26(7), 889–895 (2010)

    Article  Google Scholar 

  27. Zemla, A.: LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res. 31(13), 3370–3374 (2003)

    Article  Google Scholar 

  28. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

    Article  Google Scholar 

  29. Zhang, X., et al.: 3D protein structure prediction with genetic tabu search algorithm. BMC Syst. Biol. 4(1), S6 (2010)

    Article  Google Scholar 

  30. Zhang, Y., Skolnick, J.: Scoring function for automated assessment of protein structure template quality. Proteins: Struct. Funct. Bioinf. 57(4), 702–710 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Stubs Parpinelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, R.S., Stubs Parpinelli, R. (2019). A Self-adaptive Differential Evolution with Fragment Insertion for the Protein Structure Prediction Problem. In: Blesa Aguilera, M., Blum, C., Gambini Santos, H., Pinacho-Davidson, P., Godoy del Campo, J. (eds) Hybrid Metaheuristics. HM 2019. Lecture Notes in Computer Science(), vol 11299. Springer, Cham. https://doi.org/10.1007/978-3-030-05983-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05983-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05982-8

  • Online ISBN: 978-3-030-05983-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics