Skip to main content

Role of Selective Exogenous Elicitors in Plant Responses to Abiotic Stress Tolerance

  • Chapter
  • First Online:
Plant Abiotic Stress Tolerance

Abstract

Abiotic stress is currently being realized as one of the most ubiquitous and potential threats to human existence which results in the overwhelming consequences to human health as well as agricultural systems. Different types of abiotic stresses viz., salt stress, heavy metal stress, water stress, temperature stress, and chilling stress are the major constraints to sustainable agriculture causing numerous direct and indirect effects on plants thereby affecting the quality and productivity of different plants in one way or the other. However, plants possess a range of potential cellular mechanisms that help them in overcoming the devastating stressful effects. Plant elicitors, certain endogenous and exogenous organic and inorganic compounds, play a vital role in helping the plant to mitigate the stress-induced changes by modulating an array of processes at cellular and molecular levels. Among the different elicitors employed during stressful conditions, abscisic acid (ABA), salicylic acid (SA), methyl jasmonate (MeJA), hydrogen peroxide (H2O2), and nitric oxide (NO) have proven promising. This chapter will summarize the role of these elicitors during stressful environments. In addition, some of the signaling aspects through which the cell metabolism is modulated by these elicitors have also been discussed. Lastly, a brief cross talk mechanism of some of these exogenous elicitors during these environmental perturbations has also been covered. The collected literature indicates that the manipulation of these selected elicitors might also be an effective way to confer abiotic stress tolerance in different crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahammed G, Xia XJ, Li X, Shi K, Yu JQ, Zhou YH (2015) Role of brassinosteroid in plant adaptation to abiotic stresses and its interplay with other hormones. Curr Protein Pept Sci 16(5):462–473

    CAS  PubMed  Google Scholar 

  • Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813

    PubMed  PubMed Central  Google Scholar 

  • Ahmad B, Khan MM, Jaleel H, Sadiq Y, Shabbir A, Uddin M (2017a) Exogenously sourced γ-irradiated chitosan-mediated regulation of growth, physiology, quality attributes and yield in Mentha piperita L. Turk J Biol 41(2):388–401

    CAS  Google Scholar 

  • Ahmad P, Alyemeni MN, Wijaya L, Alam P, Ahanger MA, Alamri SA (2017b) Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Arch Agron Soil Sci 63:1–11

    Google Scholar 

  • Ahmad B, Jaleel H, Sadiq Y, Khan MMA, Shabbir A (2018) Response of exogenous salicylic acid on cadmium induced photosynthetic damage, antioxidant metabolism and essential oil production in peppermint. J Plant Growth Regul 86(2):273–286. https://doi.org/10.1007/s10725-018-0427-z

    Article  CAS  Google Scholar 

  • Akram NA, Ashraf M (2013) Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J Plant Growth Regul 32(3):663–679

    CAS  Google Scholar 

  • Alamri SA, Siddiqui MH, Al-Khaishany MY, Nasir Khan M, Ali HM, Alaraidh IA, Mateen M (2018) Ascorbic acid improves the tolerance of wheat plants to lead toxicity. J Plant Interact 13(1):409–419

    CAS  Google Scholar 

  • Albertos P, Romero-Puertas MC, Tatematsu K, Mateos I, Sanchez-Vicente I, Nambara E, Lorenzo O (2015) S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat Commun 6:8669

    CAS  PubMed  Google Scholar 

  • Aldridge DC, Galt S, Giles D, Turner WB (1971) Metabolites of Lasiodiplodia theobromae. J Chem Soc C Org 1623–1627

    Google Scholar 

  • Anjum SA, Xie XY, Farooq M, Wang LC, Xue LI, Shahbaz M (2011) Effect of exogenous methyl jasmonate on growth, gas exchange and chlorophyll contents of soybean subjected to drought. Afr J Biotechnol 24:9647–9656

    Google Scholar 

  • Asgher M, Khan M, Anjum NA, Khan NA (2015) Minimising toxicity of cadmium in plants-role of plant growth regulators. Protoplasma 252:399–413

    CAS  PubMed  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Verma S, Vyas D, Per TS, Khan NA (2018) Ethylene and polyamines in counteracting heavy metal phytotoxicity: a crosstalk perspective. J Plant Growth Regul 37(4):1050–1065

    CAS  Google Scholar 

  • Bagheri M, Gholami M, Baninasab B (2019) Hydrogen peroxide-induced salt tolerance in relation to antioxidant systems in pistachio seedlings. Sci Hortic 243:207–213

    CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Strigolactones: multi-level regulation of biosynthesis and diverse responses in plant abiotic stresses. Acta Physiol Plant 40(5):86

    Google Scholar 

  • Banerjee A, Tripathi DK, Roychoudhury A (2018) Hydrogen sulphide trapeze: environmental stress amelioration and phytohormone crosstalk. Plant Physiol Biochem 132:46–53. https://doi.org/10.1016/j.plaphy.2018.08.028

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210(2):215–221

    CAS  PubMed  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA‐induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45(1):113–122

    CAS  PubMed  Google Scholar 

  • Brossa R, López-Carbonell M, Jubany-Marí T, Alegre L (2011) Interplay between abscisic acid and jasmonic acid and its role in water-oxidative stress in wild-type, ABA-deficient, JA-deficient, and ascorbate-deficient Arabidopsis plants. J Plant Growth Regul 30:322–333

    CAS  Google Scholar 

  • Bücker-Neto L, Paiva ALS, Machado RD (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40:373–386

    PubMed  PubMed Central  Google Scholar 

  • Castillo MC, Lozano-Juste J, Gonzalez-Guzman M, Rodriguez L, Rodriguez PL, Leon J (2015) Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Sci Signal 8:ra89

    PubMed  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30(3):239–264

    CAS  PubMed  Google Scholar 

  • Ciura J, Kruk J (2018) Phytohormones as targets for improving plant productivity and stress tolerance. J Plant Physiol 229:32–40

    CAS  PubMed  Google Scholar 

  • Clarke SM, Cristescu SM, Miersch O, Harren FJ, Wasternack C, Mur LA (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182:175–187

    CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218(6):900–905

    CAS  PubMed  Google Scholar 

  • Dar NA, Amin I, Wani W, Wani SA, Shikari AB, Wani SH, Masoodi KZ (2017) Abscisic acid: a key regulator of abiotic stress tolerance in plants. Plant Gene 11:106–111

    CAS  Google Scholar 

  • Dietz KJ, Mittler R, Noctor G (2016) Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiol 171:1535–1539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong W, Wang M, Xu F, Quan T, Peng K, Xiao L, Xia G (2013) Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. Plant Physiol 161:1217–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Tabassum MA (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921

    Google Scholar 

  • Fardus J, Matin MA, Hasanuzzaman M, Hossain MA, Hasanuzzaman M (2018) Salicylic acid-induced improvement in germination and growth parameters of wheat under salinity stress. J Anim Plant Sci 28:197–207

    CAS  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 41:281–284

    CAS  Google Scholar 

  • Farouk S, Qados AMA (2018) Enhancing seed quality and productivity as well as physio-anatomical responses of pea plants by folic acid and/or hydrogen peroxide application. Sci Hortic 240:29–37

    CAS  Google Scholar 

  • Fernando VD, Schroeder DF (2016) Role of ABA in Arabidopsis salt, drought, and desiccation tolerance. In: Abiotic and biotic stress in plants-recent advances and future perspectives. InTech

    Google Scholar 

  • Freschi L (2013) Nitric oxide and phytohormone interactions: current status and perspectives. Front Plant Sci 4:398

    PubMed  PubMed Central  Google Scholar 

  • Freschi L, Rodrigues MA, Domingues DS, Purgatto E, Van Sluys MA, Magalhaes JR, …, Mercier H (2010) Nitric oxide mediates the hormonal control of Crassulacean acid metabolism expression in young pineapple plants. Plant Physiol 152(4):1971–1985

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790–792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Mata C, Lamattina L (2003) Abscisic acid, nitric oxide and stomatal closure—is nitrate reductase one of the missing links? Trends Plant Sci 8:20–26

    CAS  PubMed  Google Scholar 

  • Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci U S A 100:11116–11121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Bharti A (2018) Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress. Mycorrhiza 28(8):727–746

    CAS  PubMed  Google Scholar 

  • Gaupels F, Furch ACU, Zimmermann MR, Chen F, Kaever V, Buhtz A (2016) Systemic induction of NO-, Redox-, and cGMP signaling in the pumpkin extrafascicular phloem upon local leaf wounding. Front Plant Sci 7:154

    PubMed  PubMed Central  Google Scholar 

  • Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630

    CAS  PubMed  Google Scholar 

  • Giuliani S, Sanguineti MC, Tuberosa R, Bellotti M, Salvi S, Landi P (2005) Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. J Exp Bot 56:3061–3070

    CAS  PubMed  Google Scholar 

  • Gondor OK, Janda T, Soós V, Pál M, Majláth I, Adak MK, Balázs E, Szalai G (2016) Salicylic acid induction of flavonoid biosynthesis pathways in wheat varies by treatment. Front Plant Sci 7:1447

    PubMed  PubMed Central  Google Scholar 

  • Hancock JT, Neill SJ, Wilson ID (2011) Nitric oxide and ABA in control of plant function. Plant Sci 181:555–559

    CAS  PubMed  Google Scholar 

  • Hao L, Yu C, Li B, Wang D (2010) Molecular cloning and preliminary analysis 1204 of TaNOA in common wheat. Sheng Wu Gong Cheng Xue Bao 26:48–56

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Bhuiyan TF, Anee TI, Inafuku M, Oku H, Fujita M (2017) Salicylic acid: an all-rounder in regulating abiotic stress responses in plants. In: Phytohormones-signaling mechanisms and crosstalk in plant development and stress responses. InTech

    Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    CAS  Google Scholar 

  • Hayat S, Maheshwari P, Wani AS, Irfan M, Alyemeni MN, Ahmad A (2012) Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L. Plant Physiol Biochem 53:61–68

    CAS  PubMed  Google Scholar 

  • He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Fiorani F (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305(5692):1968–1971

    CAS  PubMed  Google Scholar 

  • Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D (2017) Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. J Exp Bot 68:1361–1369

    CAS  PubMed  Google Scholar 

  • Iqbal H, Yaning C, Waqas M, Rehman H, Shareef M, Iqbal S (2018) Hydrogen peroxide application improves quinoa performance by affecting physiological and biochemical mechanisms under water deficit conditions. J Agron Crop Sci 204(6):541–553. https://doi.org/10.1111/jac.12284

    Article  CAS  Google Scholar 

  • Jasid S, Galatro A, Villordo JJ, Puntarulo S, Simontacchi M (2009) Role of nitric oxide in soybean cotyledon senescence. Plant Sci 176(5):662–668

    CAS  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    CAS  PubMed  Google Scholar 

  • Ke Q, Ye J, Wang B, Ren J, Yin L, Deng X, Wang S (2018) Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Front Plant Sci 9:914

    PubMed  PubMed Central  Google Scholar 

  • Keramat B, Kalantari KM, Arvin MJ (2009) Effects of methyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.). Afr J Microbiol Res 31:240–244

    Google Scholar 

  • Keskin BC, Yuksel B, Memon AR, Topal-Sarıkaya A (2010) Abscisic acid regulated gene expression in bread wheat (‘Triticum aestivum’ L.). Aust J Crop Sci 4(8):617

    CAS  Google Scholar 

  • Khan W, Prithviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    CAS  PubMed  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Khan TA, Yusuf M, Fariduddin Q (2018) Hydrogen peroxide in regulation of plant metabolism: signalling and its effect under abiotic stress. Photosynthetica 56(4):1237–1248

    CAS  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Trifa Y (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci 97:8849–8855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leshem Y, Wills RBH, Ku V (1998) Evidence for the function of the free radical gas-nitric oxide (NO) as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833

    CAS  Google Scholar 

  • Liu Y, Chen X, Wang X, Fang Y, Huang M, Guo L, Zhao H (2018) Improving biomass and starch accumulation of bioenergy crop duckweed (Landoltia punctata) by abscisic acid application. Sci Rep 8:9544

    PubMed  PubMed Central  Google Scholar 

  • Llugany M, Martin SR, Barceló J, Poschenrieder C (2013) Endogenous jasmonic and salicylic acids levels in the Cd-hyperaccumulator Noccaea (Thlaspi) praecox exposed to fungal infection and/or mechanical stress. Plant Cell Rep 32:1243–1249

    CAS  PubMed  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162:1338–1346

    CAS  PubMed  Google Scholar 

  • Maruta T, Noshi M, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K (2012) H2O2-triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. J Biol Chem 287:11717–11729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maserti BE, Del Carratore R, Della Croce CM, Podda A, Migheli Q, Froelicher Y, Luro F, Morillon R, Ollitrault P, Talon M, Rossignol M (2011) Comparative analysis of proteome changes induced by the two spotted spider mite Tetranychus urticae and methyl jasmonate in citrus leaves. J Plant Physiol 168:392–402

    CAS  PubMed  Google Scholar 

  • McLaughlin MJ, Parker DR, Clarke JM (1999) Metals and micronutrients—food safety issues. Field Crop Res 60:143–163

    Google Scholar 

  • Mioto PT, Mercier H (2013) Abscisic acid and nitric oxide signaling in two different portions of detached leaves of Guzmania monostachia with CAM up-regulated by drought. J Plant Physiol 170:996–1002

    CAS  PubMed  Google Scholar 

  • Mir MA, Sirhindi G, Alyemeni MN, Alam P, Ahmad P (2018) Jasmonic acid improves growth performance of soybean under nickel toxicity by regulating nickel uptake, redox balance, and oxidative stress metabolism. J Plant Growth Regul 37(4):1195–1209

    CAS  Google Scholar 

  • Misra AN, Misra M, Singh R (2011) Nitric oxide: a ubiquitous signaling molecule with diverse role in plants. African J Plant Sci 5:57–74

    CAS  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    PubMed  PubMed Central  Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants where do we stand? Physiol Plant 138:372–383

    CAS  PubMed  Google Scholar 

  • Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22:959–973

    CAS  PubMed  Google Scholar 

  • Mostofa MG, Li W, Nguyen KH, Fujita M, Tran LSP (2018) Strigolactones in plant adaptation to abiotic stresses: an emerging avenue of plant research. Plant Cell Environ 41(10):2227–2243. https://doi.org/10.1111/pce.13364

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S (2018) Novel perspectives on the molecular crosstalk mechanisms of serotonin and melatonin in plants. Plant Physiol Biochem 132:33–45. https://doi.org/10.1016/j.plaphy.2018.08.031

    Article  CAS  PubMed  Google Scholar 

  • Mur LA, Prats E, Pierre S, Hall MA, Hebelstrup KH (2013) Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front Plant Sci 4:215

    PubMed  PubMed Central  Google Scholar 

  • Mustafavi SH, Shekari F, Hatami Maleki H (2016) Influence of exogenous polyamines on antioxidant defence and essential oil production in valerian (Valeriana officinalis L.) plants under drought stress. Acta Agric Slov 107:81–91

    CAS  Google Scholar 

  • Neill S, Desikan R, Hancock JT (2002a) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002b) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    CAS  PubMed  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475

    CAS  PubMed  Google Scholar 

  • Norastehnia A, Sajedi RH, Nojavan-Asghari M (2007) Inhibitory effects of methyl jasmonate on seed germination in maize (Zea mays): effect on a-amylase activity and ethylene production. Gen Appl Plant Physiol 33:13–23

    CAS  Google Scholar 

  • O’Brien JA, Benková E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci 4:451

    PubMed  PubMed Central  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pál M, Janda T, Szalai G (2018a) Interactions between plant hormones and thiol-related heavy metal chelators. Plant Growth Regul 85(2):173–185

    Google Scholar 

  • Pál M, Tajti J, Szalai G, Peeva V, Végh B, Janda T (2018b) Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants. Sci Rep 8:12839

    PubMed  PubMed Central  Google Scholar 

  • Patel PK, Hemantaranjan A (2012) Salicylic acid induced alteration in dry matter partitioning, antioxidant defence system and yield in chickpea (Cicer arietinum L.) under drought stress. Asian J Crop Sci 4:86–102

    Google Scholar 

  • Paul S, Roychoudhury A (2017) Seed priming with spermine and spermidine regulates the expression of diverse groups of abiotic stress-responsive genes during salinity stress in the seedlings of indica rice varieties. Plant Gene 11:124–132

    CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    CAS  PubMed  Google Scholar 

  • Per TS, Khan MIR, Anjum NA, Masood A, Hussain SJ, Khan NA (2018) Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters. Environ Exp Bot 145:104–120

    CAS  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    PubMed  PubMed Central  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    CAS  PubMed  Google Scholar 

  • Qiu Z, Guo J, Zhu A, Zhang L, Zhang M (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Saf 104:202–208

    CAS  PubMed  Google Scholar 

  • Rai KK, Rai N, Rai SP (2018) Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L. plants by regulating bio-physical processes and DNA methylation. Plant Physiol Biochem 128:72–88

    CAS  PubMed  Google Scholar 

  • Rasheed R, Ashraf MA, Kamran S, Iqbal M, Hussain I (2018) Menadione sodium bisulphite mediated growth, secondary metabolism, nutrient uptake and oxidative defense in okra (Abelmoschus esculentus Moench) under cadmium stress. J Hazard Mater 360:604–614. https://doi.org/10.1016/j.jhazmat.2018.08.043

    Article  CAS  PubMed  Google Scholar 

  • Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3(4):458–475

    PubMed  PubMed Central  Google Scholar 

  • Roberts DP, Mattoo AK (2018) Sustainable agriculture—enhancing environmental benefits, food nutritional quality and building crop resilience to abiotic and biotic stresses. Agriculture 8(1):8

    Google Scholar 

  • Saito N, Nakamura Y, Mori IC, Murata Y (2009) Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signal Behav 4(2):119–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sami F, Hayat S (2018) Effect of glucose on the morpho-physiology, photosynthetic efficiency, antioxidant system, and carbohydrate metabolism in Brassica juncea. Protoplasma 1–14. https://doi.org/10.1007/s00709-018-1291-4

    PubMed  Google Scholar 

  • Saxena I, Srikanth S, Chen Z (2016) Cross talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci 7:570

    PubMed  PubMed Central  Google Scholar 

  • Shakirova FM, Sakhabutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    CAS  Google Scholar 

  • Shan C, Sun H (2018) Jasmonic acid-induced NO activates MEK1/2 in regulating the metabolism of ascorbate and glutathione in maize leaves. Protoplasma 255:977–983

    CAS  PubMed  Google Scholar 

  • Shao RX, Xin LF, Guo JM, Zheng HF, Mao J, Han XP, Yang QH (2018) Salicylic acid-induced photosynthetic adaptability of Zea mays L. to polyethylene glycol-simulated water deficit is associated with nitric oxide signaling. Photosynthetica 56(4):1370–1377

    CAS  Google Scholar 

  • Si T, Wang X, Zhao C, Huang M, Cai J, Zhou Q, Dai T, Jiang D (2018) The role of hydrogen peroxide in mediating the mechanical wounding-induced freezing tolerance in wheat. Front Plant Sci 9:327

    PubMed  PubMed Central  Google Scholar 

  • Siboza XI, Bertling I, Odindo AO (2014) Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon). J Plant Physiol 171:1722–1731

    CAS  PubMed  Google Scholar 

  • Simontacchi M, García-Mata C, Bartoli CG, Santa-María GE, Lamattina L (2013) Nitric oxide as a key component in hormone-regulated processes. Plant Cell Rep 32:853–866

    CAS  PubMed  Google Scholar 

  • Singh AP, Dixit G, Mishra S, Dwivedi S, Tiwari M, Mallick S, Pandey V, Trivedi PK, Chakrabarty D, Tripathi RD (2015) Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Front Plant Sci 6:340

    PubMed  PubMed Central  Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Kumar N, Dixit S, Dhankher OP (2017a) A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.). Plant Physiol Biochem 115:163–173

    CAS  PubMed  Google Scholar 

  • Singh M, Khan MM, Uddin M, Naeem M, Qureshi MI (2017b) Proliferating effect of radiolytically depolymerized carrageenan on physiological attributes, plant water relation parameters, essential oil production and active constituents of Cymbopogon flexuosus Steud. under drought stress. PLoS One 12:e0180129

    PubMed  PubMed Central  Google Scholar 

  • Šírová J, Sedlářová M, Piterková J, Luhová L, Petřivalský M (2011) The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci 181:560–572

    PubMed  Google Scholar 

  • Soliman MH, Alayafi AA, El Kelish AA, Abu-Elsaoud AM (2018) Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes. Bot Stud 59:6

    PubMed  PubMed Central  Google Scholar 

  • Song L, Ding W, Zhao M, Sun B, Zhang L (2006) Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci 171:449–458

    CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Radchuk V, Alawady A, Borisjuk L, Weier D, Staroske N, Wobus U (2010) De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg8. Plant J 64:589–603

    CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506:265–273

    CAS  PubMed  Google Scholar 

  • Stohr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470

    PubMed  Google Scholar 

  • Sun LR, Hao FS, Lu BS, Ma LY (2010) AtNOA1 modulates nitric oxide accumulation and stomatal closure induced by salicylic acid in Arabidopsis. Plant Signal Behav 5:1022–1024

    PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    CAS  Google Scholar 

  • Tan J, Zhao H, Hong J, Han Y, Li H, Zhao W (2008) Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress. World J Agric Sci 4:307–313

    Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tominaga A, Nagata M, Futsuki A, Abe H, Uchiumi T, Abe M, Kucho K, Hashiguchi M, Akashi R, Hirsch AM, Arima S, Suzuki A (2010) Effect of abscisic acid on symbiotic nitrogen fixation activity in the root nodules of Lotus japonicas. Plant Signal Behav 5:440–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tossi V, Lamattina L, Cassia R (2009) An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New Phytol 181:871–879

    CAS  PubMed  Google Scholar 

  • Ueda J, Saniewski M (2006) Methyl jasmonate-induced stimulation of chlorophyll formation in the basal part of tulip bulbs kept under natural light conditions. J Fruit Ornam Plant Res 14:199–210

    CAS  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    CAS  PubMed  Google Scholar 

  • Verstraeten S, Aimo L, Oteiza P (2008) Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol 82:789–802

    CAS  PubMed  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ (2007) Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ 30:410–421

    CAS  PubMed  Google Scholar 

  • Wang G, Xiao Y, Deng X, Zhang H, Li T, Chen H (2018a) Exogenous hydrogen peroxide contributes to heme oxygenase-1 delaying programmed cell death in isolated aleurone layers of rice subjected to drought stress in a cGMP-dependent manner. Front Plant Sci 9:84

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Wang X, Huang M, Cai J, Zhou Q, Dai T, Cao W, Jiang D (2018b) Hydrogen peroxide and abscisic acid mediate salicylic acid-induced freezing tolerance in wheat. Front Plant Sci 9:1137

    PubMed  PubMed Central  Google Scholar 

  • Wani SH, Sah SK (2014) Biotechnology and abiotic stress tolerance in rice. J Rice Res 2:e105

    Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Google Scholar 

  • Wani W, Masoodi KZ, Zaid A, Wani SH, Shah F, Meena VS, Mosa KA (2018) Engineering plants for heavy metal stress tolerance. Rend Lincei Sci Fis Nat 29(3):709–723

    Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525

    CAS  PubMed  Google Scholar 

  • Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63:3499–3509

    CAS  PubMed  Google Scholar 

  • Wojtyla L, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:731

    Google Scholar 

  • Yan Z, Zhang W, Chen J, Li X (2015) Methyl jasmonate alleviates cadmium toxicity in Solanum nigrum by regulating metal uptake and antioxidative capacity. Biol Plant 59:373–381

    CAS  Google Scholar 

  • Zaid A, Mohammad F (2018) Methyl jasmonate and nitrogen interact to alleviate cadmium stress in mentha arvensis by regulating physio-biochemical damages and ROS detoxification. J Plant Growth Regul 37(4):1331–1348

    CAS  Google Scholar 

  • Zhang WN, Chen WL (2011) Role of salicylic acid in alleviating photochemical damage and autophagic cell death induction of cadmium stress in Arabidopsis thaliana. Photochem Photobiol Sci 10:947–955

    CAS  PubMed  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119

    Google Scholar 

  • Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007a) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36–50

    CAS  PubMed  Google Scholar 

  • Zhang S, Hu J, Zhang Y, Xie XJ, Knapp A (2007b) Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust J Agric Res 58:811–815

    CAS  Google Scholar 

  • Zhang Y, Tan J, Guo Z, Lu S, He S, Shu Z, Zhou B (2009) Increased abscisic acid levels in transgenic tobacco-overexpressing 9 cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Plant Cell Environ 32:509–519

    PubMed  Google Scholar 

  • Zhang J, Li D, Wei J, Ma W, Kong X, Rengel Z, Chen Q (2018) Melatonin alleviates aluminum-induced root growth inhibition by interfering with nitric oxide production in Arabidopsis. Environ Ex Bot. https://doi.org/10.1016/j.envexpbot.2018.08.014

    CAS  Google Scholar 

  • Zhao H, Lin X, Shi A, Chang S (1995) The regulating effects of phenolic compounds on the physiological characteristics and yield of soybeans. Acta Agron Sin 21:351–355

    Google Scholar 

  • Zhao Y, Dong W, Zhang N, Ai X, Wang M, Huang Z, Xiao L, Xia G (2014) A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol 164:1068–1076

    CAS  PubMed  Google Scholar 

  • Zhu CQ, Zhang JH, Sun LM, Zhu LF, Abliz B, Hu WJ, Zhong C, Bai ZG, Sajid H, Cao XC, Jin QY (2018) Hydrogen sulfide alleviates aluminum toxicity via decreasing Apoplast and Symplast Al contents in Rice. Front Plant Sci 9:294

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbu Zaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, B., Zaid, A., Sadiq, Y., Bashir, S., Wani, S.H. (2019). Role of Selective Exogenous Elicitors in Plant Responses to Abiotic Stress Tolerance. In: Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds) Plant Abiotic Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_12

Download citation

Publish with us

Policies and ethics