Skip to main content

Comparison of Dissolution Kinetics of Nonmetallic Inclusions in Steelmaking Slag

  • Conference paper
  • First Online:
Advanced Real Time Imaging II

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Nonmetallic oxide inclusions of Al2O3, Al2TiO5, and CaO · 2Al2O3 (CA2) types are responsible for clogging of ceramic nozzles during liquid steel processing. The dissolution of these inclusions in steelmaking slags alleviates the clogging phenomenon. The in situ dissolution behavior a single oxide particle is studied in a synthetic CaO–Al2O3–SiO2 type slag using a high-temperature confocal scanning laser microscope at 1550 °C. The rate determining step for Al2O3 and CA2 inclusions was confirmed to be mass transport control in slag. The rate determining step for dissolution of Al2TiO5 needs further investigation. The rate of dissolution varied in the order from slowest to fastest: Al2O3 < CA2 < Al2TiO5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rackers KG, Thomas BG (1995) 78th steelmak. Conf Proc 78:723

    CAS  Google Scholar 

  2. Zhang L, Thomas BG (Nov. 2003) XXIV National Steelmaking Symposium. Morelia, Mich, Mexico 26–28:138–183

    Google Scholar 

  3. Cramb AW, Maddalena RL (2003) Refract materials, 11th edn. AISE Steel Foundation, Pittsburgh, pp 2–5

    Google Scholar 

  4. Thornton PA (1971) J Mater Sci 6:347

    Article  CAS  Google Scholar 

  5. Lee SH, Tse C, Yi KW, Misra P, Chevrier V, Orrling C, Sridhar S, Cramb AW (2001) J Non Cryst Solids 282:41

    Article  CAS  Google Scholar 

  6. Valdez M, Prapakorn K, Cramb AW, Sridhar S (2002) Ironnmak Steelmak 29:47

    Article  CAS  Google Scholar 

  7. Liu J, Verhaeghe F, Guo M, Blanpain B, Wollants P (2007) J Am Ceram Soc 90:3818

    CAS  Google Scholar 

  8. Sridhar S, Cramb AW (2003) High Temp Mater Process 22:275

    Article  CAS  Google Scholar 

  9. Valdez M, Shannon GS, Sridhar S (2006) ISIJ Int 46:450

    Article  CAS  Google Scholar 

  10. Michelic S, Goriupp J, Feichtinger S, Kang YB, Bernhard C, Schenk J (2016) Steel Res Int 87:57

    Article  CAS  Google Scholar 

  11. Monaghan BJ, Chen L (2004) J Non Cryst Solids 347:254

    Article  CAS  Google Scholar 

  12. Yin HB, Shibata H, Emi T, Suzuki M (1997) ISIJ Int 37:936

    Article  CAS  Google Scholar 

  13. Orrling C, Phinichka N, Sridhar S, Cramb AW, Fang Y (2000) JOM 51:1

    Google Scholar 

  14. Chikama H, Shibata H, Emi T, Suzuki M (1996) Mater Trans 37:620

    Article  CAS  Google Scholar 

  15. Shibata H, Arai Y, Suzuki M, Emi T (2000) Metall Mater Trans B 31:981

    Google Scholar 

  16. Phelan D, Reid MH, Dippenaar R (2005) Microsc Microanal 11:670

    Article  Google Scholar 

  17. Sridhar S (2005) Application of confocal scanning laser microscopy to steel research. In: The 3rd international congress on the science and technology of steelmaking, Charlotte, NC. AIST, Warrendale, PA

    Google Scholar 

  18. Verhaeghe F, Liu J, Guo M, Arnout S, Blanpain B, Wollants P (2007) Appl Phys Lett 91:124104

    Article  Google Scholar 

  19. Sridhar S, Cramb AW (2000) Metall Mater Trans B 31:406

    Article  Google Scholar 

  20. Yi KW, Tse C, Park JH, Valdez M, Cramb AW, Sridhar S (2003) Scand J Metall 32:177

    Article  CAS  Google Scholar 

  21. Monaghan BJ, Chen L (2005) Steel Res Int 76:346

    Article  Google Scholar 

  22. Fox AB, Valdez ME, Gisby J, Atwood RC, Lee PD, Sridhar S (2004) ISIJ Int 44:836

    Article  CAS  Google Scholar 

  23. Park JH, Jung I, Lee H (2006) ISIJ Int 46:1626

    Article  CAS  Google Scholar 

  24. Liu J, Guo M, Jones PT, Verhaeghe F, Blanpain B, Wollants P (2007) J Eur Ceram Soc 27:1961

    Article  CAS  Google Scholar 

  25. Monaghan BJ, Chen L (2006) Ironmak Steelmak 33:323

    Article  CAS  Google Scholar 

  26. Monaghan BJ, Chen L, Sorbe J (2005) Ironmak Steelmak 32:258

    Article  CAS  Google Scholar 

  27. Feichtinger S, Michelic SK, Kang YB, Bernhard C (2014) J Am Ceram Soc 97:316

    Article  CAS  Google Scholar 

  28. Guo X, Guo M, Sun Z, Van Dyck J, Blanpain B, Wollants P (2010) Materials science and technology conference, pp 1739–1750

    Google Scholar 

  29. Miao K, Haas A, Sharma M, Mu W, Dogan N (2018) Metall Mater Trans B 49:1612

    Google Scholar 

  30. Sharma M, Mu W, Dogan N (2018) JOM 70:1220

    Article  CAS  Google Scholar 

  31. Sharma M, Dabkowska HA, Dogan N (2018) Steel Res Int 1800367:1

    Google Scholar 

  32. Sharma M, Mu W, Dogan N (2018) AISTech 2018, pp 2601–2608

    Google Scholar 

  33. Allibert M, Gaye H, Geisler J, Janke D, Keene BJ, Kirner D, Kowalski M, Lehmann J, Mills KC, Neuschutz D, Parra R, Saint Jours C, Spencer PJ, Susa M, Tmar M, Woermann E (1995) Slag Atlas, 2nd edn. Dusseldorf, p 48

    Google Scholar 

  34. Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New York

    Google Scholar 

  35. De Arenas IB (2012) In: Lakshmanan DA (eds) Sintering of ceramics—new emerging techniques, 1st edn. InTech, p 503

    Google Scholar 

  36. Yan P, Webler BA, Pistorius PC, Fruehan RJ (2015) Metall Mater Trans B 46:2414

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, M., Dogan, N. (2019). Comparison of Dissolution Kinetics of Nonmetallic Inclusions in Steelmaking Slag. In: Nakano, J., et al. Advanced Real Time Imaging II. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-06143-2_12

Download citation

Publish with us

Policies and ethics