Skip to main content

Visualizing Products and Consumers: A Gestalt Theory Inspired Method

  • Chapter
  • First Online:
Business and Consumer Analytics: New Ideas

Abstract

Motivated by the ability that visualizations have for explaining complex relationships, we revisit an alternative and efficient algorithm for visualizing relationships between objects. QAPgrid was proposed to solve the problem of allocating objects in a grid. The algorithm uses as its mathematical model the NP-hard Quadratic Assignment Problem. We implemented an efficient Memetic Algorithm for solving the layout optimization problem. The algorithm has been previously tested on a variety of datasets with good results. In this chapter, we explore the algorithm’s potential for analysing social networks. In particular, we examined the collaboration network created around the artificial world of the Marvel Universe comic books. We show how the algorithm can generate accurate and informative visualizations for analysing complex graphs. Furthermore, to demonstrate an alternative use of the algorithm, we analyse and visualize products (wines) and customers (telecom clients). In doing so, we show how the algorithm is suitable for the analysis of different types of objects organized as a network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://psychclassics.yorku.ca/Wertheimer/Forms/forms.htm.

  2. 2.

    http://marvel.com/comics.

  3. 3.

    https://www.yworks.com/products/yed.

  4. 4.

    http://archive.ics.uci.edu/ml/datasets/Wine+Quality.

  5. 5.

    The “datafication” concept is discussed by Kennet Neil Cukier and Viktor Mayer-Mayer-Schoenberger in “The Rise of Big Data”, Foreign Affairs, 2013.

References

  1. Dirk J. Lehmann and Holger Theisel. Optimal sets of projections of high-dimensional data. IEEE Trans. Vis. Comput. Graph., 22(1):609–618, 2016.

    Article  Google Scholar 

  2. Edward R. Tufte. The Visual Display of Quantitative Information, (Second Edition). Graphics Press, 2001.

    Google Scholar 

  3. Mitchell Scheiman and Michael W Rouse. Optometric management of learning-related vision problems. Elsevier Health Sciences, 2006.

    Google Scholar 

  4. Stephen M Kosslyn, Jonathan A Margolis, Anna M Barrett, Emily J Goldknopf, and Philip F Daly. Age differences in imagery abilities. Child development, 61(4):995–1010, 1990.

    Article  Google Scholar 

  5. Will J Schroeder, Bill Lorensen, and Ken Martin. The visualization toolkit. Kitware, 2004.

    Google Scholar 

  6. Dejan Todorovic. Gestalt principles. Scholarpedia, 3(12):5345, 2008.

    Article  Google Scholar 

  7. Agnex Desolneux, Lionel Moisan, and Jean-Michel Morel. From Gestalt Theory to Image Analysis: A Probabilistic Approach. Springer, 2008.

    Book  Google Scholar 

  8. Yonggang Qi, Jun Guo, Yi Li, Honggang Zhang, Tao Xiang, Yi-Zhe Song, and Zheng-Hua Tan. Perceptual grouping via untangling gestalt principles. In 2013 Visual Communications and Image Processing, VCIP 2013, Kuching, Malaysia, November 17–20, 2013, pages 1–6. IEEE, 2013.

    Google Scholar 

  9. Jin-Gang Yu, Gui-Song Xia, Changxin Gao, and Ashok Samal. A computational model for object-based visual saliency: Spreading attention along gestalt cues. IEEE Trans. Multimedia, 18(2):273–286, 2016.

    Article  Google Scholar 

  10. Dempsey Chang, Keith V. Nesbitt, and Kevin Wilkins. The gestalt principles of similarity and proximity apply to both the haptic and visual grouping of elements. In Wayne Piekarski and Beryl Plimmer, editors, User Interfaces 2007, Eighth Australasian User Interface Conference, AUIC 2007, Ballarat, Victoria, Australia, January 30 - February 2, 2007, volume 64 of CRPIT, pages 79–86. Australian Computer Society, 2007.

    Google Scholar 

  11. Youn-Kyung Lim, Erik Stolterman, Heekyoung Jung, and Justin Donaldson. Interaction gestalt and the design of aesthetic interactions. In Ilpo Koskinen and Turkka Keinonen, editors, Proceedings of the 2007 International Conference on Designing Pleasurable Products and Interfaces, 2007, Helsinki, Finland, August 22–25, 2007, pages 239–254. ACM, 2007.

    Google Scholar 

  12. Juan M. Gómez Reynoso and Lorne Olfman. The impact of combining gestalt theories with interface design guidelines in designing user interfaces. In 18th Americas Conference on Information Systems, AMCIS 2012, Seattle, Washington August 9–11, 2012. Association for Information Systems, 2012.

    Google Scholar 

  13. Debaleena Chattopadhyay. Exploring perceptual and motor gestalt in touchless interactions with distant displays. In Bill Verplank, Wendy Ju, Alissa Nicole Antle, Ali Mazalek, and Florian ‘Floyd’ Mueller, editors, Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’15, Stanford, California, USA, January 15–19, 2015, pages 433–436. ACM, 2015.

    Google Scholar 

  14. Birte Möller, Cornelia Brezing, and Dagmar C. Unz. What should a corporate website look like? the influence of gestalt principles and visualisation in website design on the degree of acceptance and recommendation. Behaviour & IT, 31(7):739–751, 2012.

    Google Scholar 

  15. Krystle Lemon, Edward B. Allen, Jeffrey C. Carver, and Gary L. Bradshaw. An empirical study of the effects of gestalt principles on diagram understandability. In Proceedings of the First International Symposium on Empirical Software Engineering and Measurement, ESEM 2007, September 20–21, 2007, Madrid, Spain, pages 156–165. ACM / IEEE Computer Society, 2007.

    Google Scholar 

  16. Peifeng Xiang, Xin Yang, and Yuanchun Shi. Web page segmentation based on gestalt theory. In Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, ICME 2007, July 2–5, 2007, Beijing, China, pages 2253–2256. IEEE, 2007.

    Google Scholar 

  17. Zhen Xu and James Miller. A new webpage classification model based on visual information using gestalt laws of grouping. In Jianyong Wang, Wojciech Cellary, Dingding Wang, Hua Wang, Shu-Ching Chen, Tao Li, and Yanchun Zhang, editors, Web Information Systems Engineering - WISE 2015 - 16th International Conference, Miami, FL, USA, November 1–3, 2015, Proceedings, Part II, volume 9419 of Lecture Notes in Computer Science, pages 225–232. Springer, 2015.

    Google Scholar 

  18. Xin Yang and Yuanchun Shi. Enhanced gestalt theory guided web page segmentation for mobile browsing. In Proceedings of the 2009 IEEE/WIC/ACM International Conference on Web Intelligence and International Conference on Intelligent Agent Technology - Workshops, Milan, Italy, 15–18 September 2009, pages 46–49. IEEE Computer Society, 2009.

    Google Scholar 

  19. Vasant Dhar, Tomer Geva, Gal Oestreicher-Singer, and Arun Sundararajan. Prediction in economic networks: Using the implicit gestalt in product graphs. In Proceedings of the International Conference on Information Systems, ICIS 2012, Orlando, Florida, USA, December 16–19, 2012. Association for Information Systems, 2012.

    Google Scholar 

  20. Yuan Ren, Huixuan Tang, and Hui Wei. A Markov random field model for image segmentation based on gestalt laws. In Bao-Liang Lu, Liqing Zhang, and James T. Kwok, editors, Neural Information Processing - 18th International Conference, ICONIP 2011, Shanghai, China, November 13–17, 2011, Proceedings, Part III, volume 7064 of Lecture Notes in Computer Science, pages 582–591. Springer, 2011.

    Google Scholar 

  21. Jeni Paay and Jesper Kjeldskov. A gestalt theoretic perspective on the user experience of location-based services. In Bruce Thomas, editor, Proceedings of the 2007 Australasian Computer-Human Interaction Conference, OZCHI 2007, Adelaide, Australia, November 28–30, 2007, volume 251 of ACM International Conference Proceeding Series, pages 283–290. ACM, 2007.

    Google Scholar 

  22. Robert Fraher and James Boyd-Brent. Gestalt theory, engagement and interaction. In Elizabeth D. Mynatt, Don Schoner, Geraldine Fitzpatrick, Scott E. Hudson, W. Keith Edwards, and Tom Rodden, editors, Proceedings of the 28th International Conference on Human Factors in Computing Systems, CHI 2010, Extended Abstracts Volume, Atlanta, Georgia, USA, April 10–15, 2010, pages 3211–3216. ACM, 2010.

    Google Scholar 

  23. Guihua Wen, Xingjiang Pan, Lijun Jiang, and Jun Wen. Modeling gestalt laws for classification. In Fuchun Sun, Yingxu Wang, Jianhua Lu, Bo Zhang, Witold Kinsner, and Lotfi A. Zadeh, editors, Proceedings of the 9th IEEE International Conference on Cognitive Informatics, ICCI 2010, July 7–9, 2010, Beijing, China, pages 914–918. IEEE Computer Society, 2010.

    Google Scholar 

  24. Nicholas F. Polys, Doug A. Bowman, and Chris North. The role of depth and gestalt cues in information-rich virtual environments. Int. J. Hum.-Comput. Stud., 69(1-2):30–51, 2011.

    Article  Google Scholar 

  25. Muhammad Hafiz Wan Rosli and Andres Cabrera. Gestalt principles in multimodal data representation. IEEE Computer Graphics and Applications, 35(2):80–87, 2015.

    Article  Google Scholar 

  26. João Carlos Riccó Plácido da Silva, Luis Carlos Paschoarelli, and José Carlos Plácido da Silva. The importance of using gestalt and grid in building brands. In Constantine Stephanidis, editor, HCI International 2015 - Posters’ Extended Abstracts - International Conference, HCI International 2015, Los Angeles, CA, USA, August 2–7, 2015. Proceedings, Part II, volume 529 of Communications in Computer and Information Science, pages 187–191. Springer, 2015.

    Google Scholar 

  27. Amalia I. Rusu, Andrew J. Fabian, Radu Jianu, and Adrian Rusu. Using the gestalt principle of closure to alleviate the edge crossing problem in graph drawings. In Ebad Banissi, Stefan Bertschi, Remo Aslak Burkhard, Urska Cvek, Martin J. Eppler, Camilla Forsell, Georges G. Grinstein, Jimmy Johansson, Sarah Kenderdine, Francis T. Marchese, Carsten Maple, Marjan Trutschl, Muhammad Sarfraz, Liz J. Stuart, Anna Ursyn, and Theodor G. Wyeld, editors, 15th International Conference on Information Visualisation, IV 2011, London, United Kingdom, July 13–15, 2011, pages 488–493. IEEE Computer Society, 2011.

    Google Scholar 

  28. Jie Wu and Liqing Zhang. Gestalt saliency: Salient region detection based on gestalt principles. In IEEE International Conference on Image Processing, ICIP 2013, Melbourne, Australia, September 15–18, 2013, pages 181–185. IEEE, 2013.

    Google Scholar 

  29. Nadia Ali and David Peebles. The effect of gestalt laws of perceptual organization on the comprehension of three-variable bar and line graphs. Human Factors, 55(1):183–203, 2013.

    Article  Google Scholar 

  30. Hyunrae Jo, Amitash Ojha, and Minho Lee. A study on region of interest of a selective attention based on gestalt principles. In Minho Lee, Akira Hirose, Zeng-Guang Hou, and Rhee Man Kil, editors, Neural Information Processing - 20th International Conference, ICONIP 2013, Daegu, Korea, November 3–7, 2013. Proceedings, Part III, volume 8228 of Lecture Notes in Computer Science, pages 41–48. Springer, 2013.

    Google Scholar 

  31. Mario Inostroza-Ponta, Regina Berretta, and Pablo Moscato. QAPgrid: A two level QAP-based approach for large-scale data analysis and visualization. PloS one, 6(1):e14468, 2011.

    Article  Google Scholar 

  32. Tjalling C Koopmans and Martin Beckmann. Assignment problems and the location of economic activities. Econometrica: journal of the Econometric Society, pages 53–76, 1957.

    Google Scholar 

  33. Rainer E Burkard, Eranda Cela, Panos M Pardalos, and Leonidas S Pitsoulis. The quadratic assignment problem. In Handbook of combinatorial optimization, pages 1713–1809. Springer, 1998.

    Google Scholar 

  34. Mario Inostroza-Ponta, Alexandre Mendes, Regina Berretta, and Pablo Moscato. An integrated QAP-based approach to visualize patterns of gene expression similarity. In Progress in Artificial Life, pages 156–167. Springer, 2007.

    Google Scholar 

  35. Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar Boruvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discrete Mathematics, 233(1):3–36, 2001.

    Article  MathSciNet  Google Scholar 

  36. Evelyn Fix and Joseph L Hodges Jr. Discriminatory analysis-nonparametric discrimination: consistency properties. Technical report, DTIC Document, 1951.

    Google Scholar 

  37. Thomas M Cover and Peter E Hart. Nearest neighbor pattern classification. Information Theory, IEEE Transactions on, 13(1):21–27, 1967.

    Google Scholar 

  38. Pablo Moscato et al. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report, 826:1989, 1989.

    Google Scholar 

  39. Richard Dawkin. The selfish gene. Oxford University Press, 1:976, 1976.

    Google Scholar 

  40. Ferrante Neri, Carlos Cotta, and Pablo Moscato. Handbook of memetic algorithms, volume 379. Springer, 2012.

    Book  Google Scholar 

  41. Ferrante Neri and Carlos Cotta. Memetic algorithms and memetic computing optimization: A literature review. Swarm and Evolutionary Computation, 2:1–14, 2012.

    Article  Google Scholar 

  42. Peter Merz and Bernd Freisleben. Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. Evolutionary Computation, IEEE Transactions on, 4(4):337–352, 2000.

    Article  Google Scholar 

  43. Fred Glover and Manuel Laguna. Tabu Search. Springer, 2013.

    MATH  Google Scholar 

  44. Regina Berretta and Luiz Fernando Rodrigues. A memetic algorithm for a multistage capacitated lot-sizing problem. International Journal of Production Economics, 87(1):67–81, 2004.

    Article  Google Scholar 

  45. Pablo Moscato, Alexandre Mendes, and Regina Berretta. Benchmarking a memetic algorithm for ordering microarray data. Biosystems, 88(1):56–75, 2007.

    Article  Google Scholar 

  46. Luciana Buriol, Paulo M França, and Pablo Moscato. A new memetic algorithm for the asymmetric traveling salesman problem. Journal of Heuristics, 10(5):483–506, 2004.

    Article  Google Scholar 

  47. Alexandre Mendes, Carlos Cotta, Vinícius Garcia, Paulo França, and Pablo Moscato. Gene ordering in microarray data using parallel memetic algorithms. In Parallel Processing, 2005. ICPP 2005 Workshops. International Conference Workshops on, pages 604–611. IEEE, 2005.

    Google Scholar 

  48. Les Daniels. Marvel: Five fabulous decades of the world’s greatest comics, volume 1. Harry N Abrams Inc, 1991.

    Google Scholar 

  49. Ricardo Alberich, Joe Miro-Julia, and Francesc Rosselló. Marvel universe looks almost like a real social network. arXiv preprint cond-mat/0202174, 2002.

    Google Scholar 

  50. José Marıa González-Barrios and Adolfo J Quiroz. A clustering procedure based on the comparison between the k nearest neighbors graph and the minimal spanning tree. Statistics & Probability Letters, 62(1):23–34, 2003.

    Article  MathSciNet  Google Scholar 

  51. Mario Inostroza-Ponta, Regina Berretta, Alexandre Mendes, and Pablo Moscato. An automatic graph layout procedure to visualize correlated data. In Artificial Intelligence in Theory and Practice, pages 179–188. Springer, 2006.

    Google Scholar 

  52. Anne Capp, Mario Inostroza-Ponta, Dana Bill, Pablo Moscato, Chi Lai, David Christie, David Lamb, Sandra Turner, David Joseph, John Matthews, et al. Is there more than one proctitis syndrome? a revisitation using data from the TROG 96.01 trial. Radiotherapy and oncology, 90(3):400–407, 2009.

    Article  Google Scholar 

  53. Stephen G Kobourov. Spring embedders and force directed graph drawing algorithms. arXiv preprint arXiv:1201.3011, 2012.

    Google Scholar 

  54. Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems, 47(4):547–553, 2009.

    Article  Google Scholar 

Download references

Acknowledgements

Pablo Moscato acknowledges previous support from the Australian Research Council Future Fellowship FT120100060 and Australian Research Council Discovery Projects DP120102576 and DP140104183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Sanhueza Lobos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lobos, C.S., de Vries, N.J., Inostroza-Ponta, M., Berretta, R., Moscato, P. (2019). Visualizing Products and Consumers: A Gestalt Theory Inspired Method. In: Moscato, P., de Vries, N. (eds) Business and Consumer Analytics: New Ideas. Springer, Cham. https://doi.org/10.1007/978-3-030-06222-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06222-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06221-7

  • Online ISBN: 978-3-030-06222-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics