Skip to main content

Robustness Analysis of Coronary Arteries Segmentation

  • Conference paper
  • First Online:
Smart Modeling for Engineering Systems (GCM50 2018)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 133))

  • 259 Accesses

Abstract

Segmentation of medical scans is the first and fundamental stage of numerical modeling of the human cardiovascular system. In this chapter, we analyze the results of coronary arteries segmentation using our approach for ten contrast-enhanced Computer Tomography Angiography datasets with different image quality and contrast phases. The segmentation is also affected by the patient anatomy, the shape and the scope of images. Our results show that the contrast phase timing is crucial for successful automatic segmentation. These factors form restrictions on the input data for automatic segmentation algorithms. Nevertheless, user guidance such as manual seeding and setting of thresholds can be used to significantly improve segmentation results and weaken the input restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Formaggia, L., Quarteroni, A., Veneziani, A.: Cardiovascular Mathematics—Modeling and Simulation of the Circulatory System. Springer, Verlag Milan (2009)

    MATH  Google Scholar 

  2. Quarteroni, A., Veneziani, A., Vergara, C.: Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng. 302, 193–252 (2016)

    Article  MathSciNet  Google Scholar 

  3. Taylor, C.A., Figueroa, C.A.: Patient-specific modeling of cardiovascular mechanics. Annu. Rev. Biomed. Eng. 11, 109–134 (2009)

    Article  Google Scholar 

  4. Zarins, C.K., Taylor, C.A., Min, J.K.: Computed fractional flow reserve (FFTCT) derived from coronary CT angiography. J. Cardiovasc. Transl. Res. 6(5), 708–714 (2013)

    Article  Google Scholar 

  5. Morris, P.D., Ryan, D., Morton, A.C., Lycett, R., Lawford, P.V., Hose, D.R., Gunn, J.P.: Virtual fractional flow reserve from coronary angiography: modeling the significance of coronary lesions: results from the VIRTU-1 (VIRTUal Fractional Flow Reserve From Coronary Angiography) study. JACC: Cardiovasc. Interv. 6(2), 149–157 (2013)

    Google Scholar 

  6. Vassilevski Yu. V., Danilov A.A., Gamilov T.M., Ivanov, Yu.A., Pryamonosov, R.A., Simakov, S.S.: Patient-specific anatomical models in human physiology. Russ. J. Numer. Anal. Math. Model. 30, 185–201 (2015)

    Google Scholar 

  7. Bae, K.T.: Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256(1), 32–61 (2010)

    Article  Google Scholar 

  8. Wintersperger, B.J., Nikolaou, K., von Ziegler, F., Johnson, T., Rist, C., Leber, A., Flohr, T., Knez, A., Reiser, M.F., Becker, C.R.: Image quality, motion artifacts, and reconstruction timing of 64-slice coronary computed tomography angiography with 0.33-second rotation speed. Invest. Radiol. 41(5), 436–442 (2006)

    Article  Google Scholar 

  9. Yang, G., Kitslaar, P., Frenay, M., Broersen, A., Boogers, M.J., Bax, J.J., Reiber, J.H., Dijkstra, J.: Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography. Int. J. Cardiovasc. Imaging 28(4), 921–933 (2012)

    Article  Google Scholar 

  10. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI’98, LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Kumar, R.P., Albregtsen, F., Reimers, M., Edwin, B., Lang, T., Elle, O.J.: Blood vessel segmentation and centerline tracking using local structure analysis. In: Lackovi, I., Vasic, D. (eds.) 6th European Conference of the International Federation for Medical and Biological Engineering, IFMBE Proceedings, vol. 45, pp. 122–125. Springer, Cham. (2015)

    Google Scholar 

  12. Gulsun, M.A., Tek, H.: Robust vessel tree modeling. In: Metaxas, D., Axel, L., Fichtinger, G., Szkely, G. (eds.) Medical Image Computing and Computer-Assisted Intervention (MICCAI 2008), LNCS, vol. 5241, pp. 602–611. Springer, Berlin, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Kjerland, O.: Segmentation of Coronary Arteries from CT-scans of the heart using Deep Learning. NTNU, (2017). https://daim.idi.ntnu.no/masteroppgaver/016/16918/masteroppgave.pdf

  14. Danilov, A.A., Pryamonosov, R.P., Yurova, A.S.: Image segmentation for cardiovascular biomedical applications at different scales. Computation 2016 4(3), 35 (2016)

    Article  Google Scholar 

  15. Grady, L.: Fast, quality, segmentation of large volumes—isoperimetric distance trees. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision—ECCV 2006, Image Processing, Computer Vision, Image Recognition and Graphics, vol. 3951, pp. 449–462. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Danilov, A.A., Ivanov, Y., Pryamonosov, R., Vassilevski, Y.: Methods of graph network reconstruction in personalized medicine. Int. J. Numer. Meth. Biomed. Eng. 32(8), 20 (2006)

    Article  Google Scholar 

  17. Yoo, T.S., Ackerman, M.J., Lorensen, W.E., Schroeder, W., Chalana, V., Aylward, S., Metaxas, D., Whitaker, R.: Engineering and algorithm design for an image processing API: A technical report on ITK—The Insight Toolkit. In: Westwood, J.D., Hoffman, H.M., Robb, R.A., Stredney, D. (eds.) Proceedings of Medicine Meets Virtual Reality, vol. 85, pp. 586–592, IOS Press Amsterdam (2002)

    Google Scholar 

  18. GammaMed MultiVox. http://www.gammamed.ru/. Last accessed 17 Oct 2018

  19. DOT language and GraphViz open source software. https://www.graphviz.org/. Last accessed 17 Oct 2018

Download references

Acknowledgements

The authors acknowledge Kopylov and Gognieva of the Sechenov University and Fuyou of the Shanghai Jiao Tong University for anonymized patient data, and two reviewers for valuable comments and suggestions. This work has been supported by the Russian Science Foundation (RSF), grant 14-31-00024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Pryamonosov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pryamonosov, R., Danilov, A. (2019). Robustness Analysis of Coronary Arteries Segmentation. In: Petrov, I., Favorskaya, A., Favorskaya, M., Simakov, S., Jain, L. (eds) Smart Modeling for Engineering Systems. GCM50 2018. Smart Innovation, Systems and Technologies, vol 133. Springer, Cham. https://doi.org/10.1007/978-3-030-06228-6_26

Download citation

Publish with us

Policies and ethics