Skip to main content

Developmental Prospects of Boriding

  • Chapter
  • First Online:
Current Trends in Boriding

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

All the types of microstructure of surface layers with boron were classified. The boriding techniques, resulting in the formation of these types of microstructure, were specified. The developmental prospects of the boriding process were formulated by indicating the most attractive techniques, taking into account their most important features and possibility of their use for boriding of a wide range of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballhause P, Wolf GK (1989) The Influence of temperature on the performance of ion-implanted metal-forming tools. Mater Sci Eng A 115:273–277

    Article  Google Scholar 

  • Bataev IA, Bataev AA, Golkovski MG, Krivizhenko DS, Losinskaya AA, Lenivtseva OG (2013) Structure of surface layers produced by non-vacuum electron beam boriding. Appl Surf Sci 284:472–481

    Article  CAS  Google Scholar 

  • Bourithis L, Papaefthymiou S, Papadimitriou GD (2002) Plasma transferred arc boriding of a low carbon steel: microstructure and wear properties. Appl Surf Sci 200:203–218

    Article  CAS  Google Scholar 

  • Davis JA, Wilbur PJ, Williamson DL, Wei R, Vajo JJ (1998) Ion implantation boriding of iron and AISI M2 steel using a high-current density, low energy, broad-beam ion source. Surf Coat Technol 103–104:52–57

    Article  Google Scholar 

  • Euh K, Lee J, Lee S, Koo Y, Kim NJ (2001) Microstructural modification and hardness improvement in boride/Ti-6Al-4V surface-alloyed materials fabricated by high-energy electron beam irradiation. Scripta Mater 45:1–6

    Article  CAS  Google Scholar 

  • Filip R, Sieniawski J, Pleszakov E (2006) Formation of surface layers on Ti–6Al–4V titanium alloy by laser alloying. Surf Eng 22(1):53–57

    Article  CAS  Google Scholar 

  • Frąckowiak M, Makuch N, Dziarski P, Kulka M, Taktak S (2018) Fracture toughness of plasma paste-borided layers produced on nickel-based alloys. Lect Notes Mech Eng 201519:923–932

    Article  Google Scholar 

  • Kholmetskii AL, Anischik VM, Uglov VV, Rusalsky DP, Kuleshov AK, Fedotova JA (2003) CEMS investigations of AISI M2 steel after ion implantation by nitrogen, boron and carbon. Vacuum 69:521–527

    Article  CAS  Google Scholar 

  • Kulka M (2009) The gradient boride layers formed by borocarburizing and laser surface modification. Dissertation No. 428, Publishing House of Poznan University of Technology, Poznan, ISBN 978-83-7143-821-9

    Google Scholar 

  • Kulka M, Pertek A (2003a) Microstructure and properties of borided 41Cr4 steel after laser surface modification with re-melting. Appl Surf Sci 214:278–288

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A (2003b) The importance of carbon content beneath iron borides after boriding of chromium and nickel-based low-carbon steel. Appl Surf Sci 214:161–171

    Article  CAS  Google Scholar 

  • Kulka M, Pertek A (2003c) Characterization of complex (B-C-N) diffusion layers formed on chromium and nickel-based low-carbon steel. Appl Surf Sci 218:113–122

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Pertek A, Małdziński L (2013a) Simulation of the growth kinetics of boride layers formed on Fe during gas boriding in H2-BCl3 atmosphere. J Solid State Chem 199:196–203

    Article  CAS  Google Scholar 

  • Kulka M, Dziarski P, Makuch N, Piasecki A, Miklaszewski A (2013b) Microstructure and properties of laser-borided Inconel 600-alloy. Appl Surf Sci 284:757–771

    Article  CAS  Google Scholar 

  • Kulka M, Makuch N, Dziarski P, Piasecki A, Miklaszewski A (2014) Microstructure and properties of laser-borided composite layers formed on commercially pure titanium. Opt Laser Technol 56:409–424

    Article  CAS  Google Scholar 

  • Kulka M, Mikolajczak D, Makuch N, Dziarski P, Miklaszewski A (2016) Wear resistance improvement of austenitic 316L steel by laser alloying with boron. Surf Coat Technol 291:292–313

    Article  CAS  Google Scholar 

  • Kusmanov SA, Naumov AR, Tambovskiy IV, Belkin PN (2015) Anode plasma electrolytic saturation of low-carbon steel with carbon, nitrogen, boron, and sulfur. Lett Mater 5(1):35–38

    Article  Google Scholar 

  • Kusmanov SA, Tambovskiy IV, Sevostyanova VS, Savushkina SV, Belkin PN (2016) Anode plasma electrolytic boriding of medium carbon steel. Surf Coat Technol 291:334–341

    Article  CAS  Google Scholar 

  • Kusmanov SA, Tambovskiy IV, Naumov AR, D’yakov IG, Kusmanova IA, Belkin PN (2017) Anodic electrolytic-plasma borocarburizing of low-carbon steel. Prot Metals Phys Chem Surf 53(3):488–494

    Article  CAS  Google Scholar 

  • Lou DC, Solberg JK, Akselsen OM, Dahl N (2009) Microstructure and property investigation of paste boronized pure nickel and Nimonic 90 superalloy. Mater Chem Phys 115:239–244

    Article  CAS  Google Scholar 

  • Makuch N, Kulka M, Dziarski P, Przestacki D (2014) Laser surface alloying of commercially pure titanium with boron and carbon. Opt Lasers Eng 57:64–81

    Article  Google Scholar 

  • Makuch N, Kulka M, Piasecki A (2015) The effects of chemical composition of Nimonic 80A-alloy on the microstructure and properties of gas-borided layer. Surf Coat Technol 276:440–455

    Article  CAS  Google Scholar 

  • Makuch N, Kulka M, Keddam M, Taktak S, Ataibis V, Dziarski P (2017) Growth kinetics and some mechanical properties of two-phase boride layers produced on commercially pure titanium during plasma paste boriding. Thin Solid Films 626:25–37

    Article  CAS  Google Scholar 

  • Miklaszewski A, Jurczyk MU, Jurczyk M (2013) Microstructural development of Ti-B alloyed layer for hard tissue applications. J Mater Sci Technol 29(6):565–572

    Article  CAS  Google Scholar 

  • Mikołajczak D, Piasecki A, Kulka M, Makuch N (2016) Laser alloying of 316L steel with boron using CaF2 self-lubricating addition. Inżynieria Materiałowa (Mater Eng) 1(209):4–9

    Google Scholar 

  • Pertek A (2001) Kształtowanie struktury i właściwości warstw borków żelaza otrzymywanych w procesie borowania gazowego (The structure formation and the properties of boronized layers obtained in gaseous boriding process) Dissertation No. 365, Publishing House of Poznan University of Technology, Poznan, ISBN 83-7143-262-2 (in Polish)

    Google Scholar 

  • Piasecki A, Kulka M, Kotkowiak M (2016) Wear resistance improvement of 100CrMnSi6-4 bearing steel by laser boriding using CaF2 self-lubricating addition. Tribol Int 97:73–191

    Article  Google Scholar 

  • Piasecki A, Kotkowiak M, Kulka M (2017) Self-lubricating surface layers produced using laser alloying of bearing steel. Wear 376–377:993–1008

    Article  CAS  Google Scholar 

  • Reuther H, Rauschenbach B, Richter E (1988) Ion implantation in metals-structure, investigations and applications. Vacuum 38(11):967–971

    Article  CAS  Google Scholar 

  • Shulov VA (1994) Effect of ion implantation on the chemical composition and structure of surface layers of heat-resistant alloys. Russ Phys J 37(5):462–477

    Article  Google Scholar 

  • Soltani-Farshi M, Baumann H, Rück D, Richter E, Kreissig U, Bethge K (1998) Content of hydrogen in boron-, carbon-, nitrogen-, oxygen-, fluorine and neon-implanted titanium. Surf Coat Technol 103–104:299–303

    Article  Google Scholar 

  • Taheri P, Dehghanian C, Aliofkhazraei M, Sabour Rouhaghdam A (2007) Nanocrystalline structure produced by complex surface treatments: plasma electrolytic nitrocarburizing, boronitriding, borocarburizing, and borocarbonitriding. Plasma Processes Polym 4:S721–S727

    Article  Google Scholar 

  • Uglov VV, Kholmetskii AL, Kuleshov AK, Rusalsky DP, Rumyanceva IN, Wei R, Vajo JJ (2002) Phase transformation of high speed steel after sequential nitrogen and boron high current density ions implantation. Surf Coat Technol 158–159:349–355

    Article  Google Scholar 

  • Wang B, Xue W, Wu J, Jin X, Hua M, Wu Z (2013a) Characterization of surface hardened layers on Q235 low-carbon steel treated by plasma electrolytic borocarburizing. J Alloy Compd 578:162–169

    Article  CAS  Google Scholar 

  • Wang B, Jin X, Xue W, Wu Z, Du J, Wu J (2013b) High temperature tribological behaviors of plasma electrolytic borocarburized Q235 low-carbon steel. Surf Coat Technol 232:142–149

    Article  CAS  Google Scholar 

  • Wypych A (2012) Wytwarzanie metodami spawalniczymi i badanie warstw wierzchnich o właściwościach żaroodpornych i żarowytrzymałych na powierzchni wybranych stali (Formation of heat-resistant and high-temperature creep resisting surface layers on the surface of selected steels by welding techniques and their investigation), In Polish, research report, unpublished work, Poznan University of Technology

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Kulka .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulka, M. (2019). Developmental Prospects of Boriding. In: Current Trends in Boriding. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-06782-3_6

Download citation

Publish with us

Policies and ethics